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INCORRECT CONTACT OF SCREW SURFACES AND
NUMERICAL SOLUTION OF THE LEAKAGE FLOW
THROUGH THE ARISEN GAP

Jan Vimmr*, Jaromir Svigler*

The article deals with the incorrect contact of screw surfaces which create tooth faces
of screw-type machine rotors and is concerned about the turbulent computation of
a gas leakage through a two-dimensional model of an undesirable gap caused by the
incorrect contact of rotor teeth screw surfaces. The incorrect contact of rotor teeth
screw surfaces, considered in this study, is caused by a parallel displacement of the
male rotor axis. The problem of the leakage flow through the two-dimensional model
of the undesirable gap is solved as a non-stationary turbulent compressible Newtonian
fluid flow with ideal gas properties. The turbulent flow is assumed to be statistically
steady and the mathematical model is described by the non-linear conservative system
of the compressible Favre-averaged Navier-Stokes equations. Its numerical solution
is performed using the cell-centred finite volume formulation of the explicit two-step
TVD MacCormack scheme which is proposed by Causon and is defined on a structured
quadrilateral grid. To simulate the turbulence effects the algebraic Baldwin-Lomax
turbulence model is implemented into the developed numerical code.

Key words : screw-type machine, incorrect contact of rotor teeth, gas leakage, com-
pressible flow, turbulence, Favre-averaged Navier-Stokes equations, finite
volume method, TVD MacCormack scheme

1. Introduction

Mathematical modelling of transonic flow of viscous compressible fluids in very narrow
channels is one of the very topical and demanding problems of internal aerodynamics today.
Screw-type machines, i.e. screw compressors or expanders that create in combination with
compressors the screw engines, represent one of many examples. The most important part
of a screw compressor, Fig. 1 (left), is its work space. It is created by screw surfaces of both
rotor teeth, Fig.1 (right), and by the inner surface of the compressor housing. The screw
compressor work space has a complex geometry [10], which volume makes smaller during
the rotors motion. That causes the compression of the fluid. The work space chambers are
separated by three main types of clearance gaps — frontal gaps at axial ends of rotors, gaps
between rotors themselves and gaps between rotors and compressor housing. The processes,
which take place in work space chambers and especially in clearance gaps on their boundaries,
have a significant influence on the screw-type machine performance. The knowledge of the
gas leakage in clearance gaps is essential to make reasonable estimates for the mass flow rate
and to define the loss of the medium. From this point of view the investigation of the leakage
flow through the clearance gaps in screw-type machines is necessary. The leakage flow can
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be reasonably modelled by computational fluid dynamics for so called dry compressors,
Fig.1 (left), where no multiphase flow occurs.

The leakage flow in the clearance gaps is studied by many screw compressor engineers,
e.g. [7],[8] or [9]. In [7] and [8] many experimental and numerical simulations of compressible
viscous fluid flow through a two-dimensional model of the male rotor-housing gap (the sealing
gap between the head of the male rotor tooth and machine housing) in a screw compressor for
various pressure ratios are presented. All of these numerical simulations were only performed
by available commercial software package Fluent using various turbulence models and the
rotary motion of the male rotor was not involved in the computations. In [14] and [15], the
turbulent computation of the gas leakage in a two-dimensional model of the 100 um wide
male rotor-housing gap was performed using the numerical code developed by the author.
The situation for the typical pressure ratio pinet/Poutlet = 2 between neighbouring work
space chambers was studied. The static pressure distribution in the two-dimensional model
of the male rotor-housing gap computed in [15] was qualitatively compared with the pressure
measurements published in [7].

Fig.1: Example of a dry screw compressor design (left)
and screw-type machine rotors (right)

This article brings several informations about another kind of undesirable clearance gap
in screw-type machines, which is caused by the incorrect contact of rotor teeth screw surfaces,
Fig.1 (right), and new original numerical results of a turbulent leakage flow computation
through the two-dimensional computational model of this undesirable clearance gap created
by the authors.

The incorrect contact of rotor teeth screw surfaces is induced by the high temperatures
and pressures of the fluid compressed in work space chambers. In this study, the incorrect
contact is created for the simplicity by a parallel displacement of the male rotor axis that
simulates a defect of the correct contact of rotor teeth screw surfaces. The inner deformation
of screw surfaces is not involved into the solution and likewise a general position of rotor axes
that arises by a real deformation of the machine housing is not accepted. This simplification
was necessary for the first step of the numerical solution of this complex problem. The
kinematical and geometrical solution of the incorrect contact of rotor teeth screw surfaces
was considered as a 3D problem for instantaneous time. The used methodology of the
numerical solution presented in this study is valid and available for screw compressors as
well as for expanders.
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In [13], the laminar computation of the leakage flow through the two-dimensional model
of the undesirable clearance gap caused by the incorrect contact of rotor teeth screw surfaces
for the prescribed pressure ratio pinlet/Poutiet = 2 was presented. It was assumed that the
leakage flow, which is characterized by the reference Reynolds number Re,, = 3900, through
this gap of 100 pm wide that represents a very narrow channel, could be laminar. But from
the obtained numerical results it seems that the assumption of the laminar computation
of the gas leakage through the two-dimensional model of this gap is not exactly correct.
Therefore the aim of this article is to include the effects of turbulence in a flow field and to
perform the turbulent computation of the gas leakage through the two-dimensional model
of this undesirable gap.

2. Incorrect contact of screw surfaces

The incorrect contact of screw surfaces oo and o3 of the female and male rotors is created
by a parallel displacement Ar,, = (Az,,, Ayo,,0)T of the male rotor axis 03. The surface
o3 is displaced in a new position agA, Fig.2. The first contact of surfaces o and agA takes
place, see Fig. 2, under the conditions

A
— _ o o o o P . P
RIK =Rprx =3r. A Fnpxgnp =0 A @3 =min{es } (1)

at the cross section 7 that is defined with ¢ = min{7p’}, j € (1,m), where ! is the angle
of rotation of the profile p§* of the surface 0 towards the contact position with the profile po
A

of the surface oo and ‘17%2 nr, 23 ny, are unit normal vectors to the surfaces oo and cr?. The
curve contact of screw surfaces by their correct meshing changes into a point contact by
their incorrect touch.

The generating surface o3 = o3(psr, x) is defined by a parametric equation %‘ZI‘L =

= %ZrL(ng,X) whose concrete form in the coordinate system Rg(Og,Zg,jg,Eg,), Fig.2, is

followed
rg sinp — 7 sin x

—Ts COS @ + Tk COS
#.rL = Tryr,(—=p3L)  Try r, (Y3L) - S 900 kEOSX (2)

1
where Tg, g, denotes a transformation matrix from the system R; to the system R;.

The conjugate surface oo = 02(psr, X, ¢2) is created in the direct envelope way according
to the Distelli theorem in the basic coordinate system R(O, 1, j, k) as

2T = TR r(7) TRy r, (—aw)  TryRrs (03) - RLTL - (3)

Then the conjugate screw surface og is described by equations

zrL = Trr(P2m0) - TrR, (92) BT, (4)
0}%31’11; *RV[32 = 0. (5)
The equation (5) forms the necessary condition for the contact of both surfaces, i.e. the con-
dition of the perpendicularity of the relative velocity vector gvyss between the both surfaces
and the unit normal vector 7ny, in the contact point L. In these equations yp3 = iz2 o,
where i32 is the requested transmission ratio. The instantaneous position of rotors, in which
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the contact of both surfaces is determined, is defined with angle wsxg = 732 Y2r0- The unit
normal vector to the screw surface o3 in the basic coordinate system R(O, i, f, k) is described
by the following equations

E0L =SRy R Fy DL, (6)
R t1 X po t
% np = Hay 17 Ror 2 (7)
|Rs t1 X Ry, B2
where Sg; r is the matrix expressing the rotational displacement of the system
R3, (037,737,537, /237) with respect to the system R(O,Z,f, E), see Fig. 2, ﬁ% ny, is the unit
normal vector to the surface o3 in the contact point L expressed in the system Rz, and
Rs, b1, Ry, t2 are tangential vectors of the surface o3. The relative velocity vector between
the both surfaces o3 and o2 in the contact point L is given by the equation

RVL32 = RVL31 — RVL21 = SRy R * Ry, VL31 — RW21 X RTL

/o

Fig.2: Searching of the incorrect contact of screw surfaces og a 0'3A

For the numerical solution of the incorrect contact of screw surfaces oo and cr?, the
following basic geometrical parameters of a screw-type machine were considered: the axis
distance a,, = 100 mm, the gear ratio izo = 1.5, the helix angle on the rolling cylinder of
both rotors v = 45°, the radius rx = 125 mm of the circle k3(S, r), Fig. 2, which represents
the profile p§* of the surface 05, displacements Az,, = 0.1 mm and Ay,, = 0.1 mm of the
male rotor axis o3. The incorrect contact of screw surfaces oo and o5 of both rotor teeth is
visualized in Fig. 3, where CHss is the contact point and mse, mg are curves of the minimum
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distance of the surfaces oo and ¢5*. In consequence of the parallel displacement of the male
rotor axis o3, the curve contact, in which the both screw surfaces touch each other correctly,
changes into the contact at the isolated point CHso, Fig. 3. The contact of screw surfaces oo
and U3A in the point CHjss is at the cross section for z = 34.04 mm.

Fig.3: Numerical simulation of the incorrect contact
of rotor teeth screw surfaces oo and 0'3A

The situation at the cross section for z = —68 mm is displayed in Fig. 4 (left). The detail
of the undesirable gap caused by the incorrect contact of screw surfaces o5 and 0% is shown
in Fig. 4 (right).
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Fig.4: The cross section of screw surfaces o2 and O'?)A for z = —68 mm (left) and

the detail of the undesirable gap caused by the incorrect contact (right)

The computational model of the gap caused by the incorrect contact of rotor teeth
screw surfaces o9 and cr? represents a two-dimensional bounded domain Q C R? at the
cross section for z = —68mm Fig.4 (right) or Fig.5 (left). The computational domain
boundary is described as 92 = 027 U 0o U IQw, where 9€); is the inlet, 0Q2o is the outlet
and 0Qw = Q) U 8955 are impermeable walls of the computational domain Q C R?
corresponding to the profiles p, and p5'. The profiles py and p5* create the upper and lower
curves of the two-dimensional computational model of the undesirable gap, Fig. 4.
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3. Mathematical model of a turbulent compressible fluid flow

Let Q C R? be a computational domain and (0,7) a time interval. The fundamental
equations for unsteady laminar flow of a compressible viscous heat-conducting Newtonian
fluid in an absolute frame of reference are derived from the integral form of the conserva-
tion laws for mass, momentum and total energy in Eulerian description, [2]. The resulting
system of the governing equations is known as the non-linear conservative system of the
Navier-Stokes equations described in [12]. For most compressible flows of practical impor-
tance, the flow is turbulent. In order to obtain the governing conservation equations for
turbulent compressible flow, it is convenient to replace the instantaneous quantities in the
system of the Navier-Stokes equations by their mean and their fluctuating values.

If ®(y,t) is any time dependent flow variable, two different types of averaging of ®(y,t)
can be defined :

— conventional time averaging introduced by Reynolds in which the instantaneous flow
variable ®(y, t) is expressed as the sum of a mean ®(y,t) and a fluctuating part ®'(y, t),
so that

Dy t) =Dy, t) + ®'(y, 1), 9)
to+At

D(y,t) = D(y,t)dt . (10)

At
to
— mass-weighted time averaging suggested by Favre in which the instantaneous flow variable
®(y,t) is decomposed into the mass-averaged part ®(y, t) and a fluctuating part ®”(y, ),

wherefore
Dy, t) = O(y,t) + " (y,t) , (11)

&)(yvt) = ) (12)

where the bar denotes conventional time averaging. Note the important differences be-

tween the two averaging procedures. In the conventional time averaging, ® = 0 and

0®’ +# 0; in the mass-weighted averaging, ®” # 0 and o ®” = 0.

Introducing a conventional time average decomposition (9) of density ¢ and static
pressure p and a mass-weighted time average decomposition (11) of the velocity vector
v = (v1,v2)T, total energy E per unit volume and thermodynamic temperature T and
application of the averaging operations described precisely in [11], produce the non-linear
system of the Favre-averaged Navier-Stokes equations (FANS) written in non-dimensional
conservative form as

SHp-S

2

OF; (w 1 OF) (w)
Z = emz oy B Qx(0,7), (13)

Jj=1 Jj=1

where t is time, y = (y1,y2)T is the vector of Cartesian space coordinates and Res, =
= Oref Uref lref/Mref 1S the reference Reynolds number. The column vector w of conservative
variables and the vectors .’F]I(W) of inviscid and .’Fy (w) of viscous fluxes are given by

W(yvt) = (w17w27w37w4)T = (5755175527E)T ) ye& Q ) te (077) ) (14)
Fj(w) = (20,001 05 +D61;,00:0; + Doy, (E+D) )", j=1,2, (15)
-'F;/(W) = (0,71j, Toj, T1j 01 + 72502 — q;)" ,  j=1,2, (16)
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where ¢;; is Kronecker delta. The shear stresses 7;; and the heat flux vectors g; in (16) can
be expressed as

~ am  ———7 dv;, Ov; 2 . Oug )

’T”—Tllj —ov/ v = (n+mn) (8y-+8yj- — 3% 3—Z/k> ; ji=12, (17)
J K3

~ am — K n T 0 23 .

4q;j —(A]; +CPQTUH—— —1(E+P’/‘t) 8y] ( ) ) Jj=12. (18)

Since the fluctuating component of the molecular viscosity 7 is usually small, it has been
neglected. In order to close the non-linear system (13) of the governing equations, the turbu-
lent shear stresses Tt”rb = —pv/ v} in (17) are modelled using the Boussinesq eddy-viscosity
approximation [4], where the concept of a turbulent (or eddy) viscosity n; is introduced.
The turbulent heat flux vectors ?f“”b = cp 0T} in (18) are modelled using a gradient
approximation written in a form such as to resemble the laminar heat flux vectors. For
this purpose, a turbulent Prandtl number Pr; is defined. The turbulent Prandtl number is

usually assumed constant and for wall bounded flows is Pry = 0.9.

Assuming a calorically perfect gas, the static pressure is given by the equation of state

;T):ETT:(K;—l)EcVTE(m—l) <E—lgvjv7) , (19)

where r = ¢, — ¢y is the gas constant per unit mass, ¢, and ¢, are the specific heats at
constant pressure and volume, respectively and x = 1.4 is Poisson’s constant. The laminar
Prandtl number defined as Pr = ¢, n/k = 0.72 is taken to be a constant for a calorically
perfect gas, where 7 is molecular viscosity and k is thermal conductivity. The external
volume forces are not considered in our case. It rests to determine the turbulent viscosity
-

The complexity of our problem motivates the use of relatively simple turbulence models.
The advantage of algebraic models is that no additional transport differential equations have
to be solved. The description of algebraic turbulence models can be found in e.g. [16] or [4].
For the computation of the turbulent viscosity 7, the algebraic turbulence model introduced
by Baldwin and Lomax [5] is considered. It is a two-layer turbulence model, based on the
mixing-length hypothesis, which is formulated for use in computations where boundary-layer
properties such as the boundary-layer thickness d, the kinetic displacement thickness 6. and
the boundary-layer edge velocity u. are difficult to determine. This situation often arises
in numerical simulation of separated flows. The turbulent viscosity 7 is given by using
a two-layer approach,

= { Mt Tf Y <Ym ... inner layer , (20)
n, if y>wym ... outer layer

where y is the normal distance from the wall and yy, is the smallest value of y for which
My, = N, For the wake region, the inner layer is not defined so we have 7, = n;,. In the
inner layer, n, is computed as follows

Ty = Elfnix |w| ) (21)

ou o
Inix = vy B Fp=1-—ecv /A" == 22
YY LD, D € ) w oy oz’ (22)
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where v is the von Karman constant, the mixing length ly,ix is determined by the van Driest
function Fp and w is the vorticity. The non-dimensional space coordinate y+, normal to the
wall, can be written as

Yy == ~ ou
y+:—\/gw|7'w|, Tw:nwa_y

Thw

: (23)

y=0

where 7y, is the wall shear stress in the direction of the flow and the subscript w indicates
the wall quantities. In the outer layer, 7  is given by

M, =0 Ccp Fyake Fleb » (24)
AV)?
Fwake = min (ymax Gmax, Cwake Ymax (G,—)> ’ Gmax = maX(y |LU| FD) ) (25)
max Yy

where ymax is the value of y where Guax occurs, G(Ymax) = Gmax, and AV is the differ-
ence between the absolute values of the maximum and minimum velocities in the profile.
For wall bounded flows, the minimum velocity occurs at the wall where the velocity is
zero, then AV = (u? + 7o )Iln/fx For shear layer flows, AV is defined as the difference
between the maximum velocity in the layer and the velocity at the ymax location, that is,
AV = (u?+7v )rln/fx —(w?+7v )zlh/fax for the direction normal to the wall. The Klebanoff’s

intermittency factor Fiep is given by

6 —1
1455 (Ckleb L ) ] . (26)
Ymax

The typical model constants v = 0.4, AT = 26, o = 0.0168, C¢p, = 1.6, Cyare = 0.25 and
Cixieb = 0.3, [16] or [4], are used in our case. Finally, the turbulent viscosity distribution

Fen, =

across the boundary layer is determined as

T = min(TIt”??to) . (27)

To simulate transition from laminar to turbulent flow, Baldwin and Lomax proposed [5] to
set 1y equal to zero everywhere in a wall-normal profile for which the maximum tentatively
computed value of ny from the foregoing relations is less than a pre-specified value, that is,

T = 0 if (nt)max in a profile < CymuTM * Tref (28)

with a proposed value of C\iurm = 14. To initiate a turbulent computation, the initial value
of the turbulent viscosity is set equal to zero everywhere within the computational domain.
Subsequently the turbulent viscosity is computed from (27) and (28) and is updated after
each time step. For the wake region, the inner layer is not defined, so n, := oo.

4. Numerical method

To solve the non-linear conservative system of the Favre-averaged Navier-Stokes equa-
tions (13), the same numerical method as for the system of the compressible Navier-Stokes
equations is used, [12], only the viscous coefficient is replaced by the sum of the molecu-
lar and turbulent viscosities. The turbulent viscosity 7 is computed using the algebraic
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Baldwin-Lomax turbulence model which is mathematically simple and its implementation
into the own developed numerical code for the laminar flow computation is easy.

For the discretization of the system of the Favre-averaged Navier-Stokes equations (13),
the cell-centred finite volume method on a structured quadrilateral grid, [2] and [12], is
used. Time integration of the inviscid part of the system (13) is realized by the finite
volume formulation of the most widely used explicit two-step TVD MacCormack scheme.
The approximation Visc(w,;) of the viscous part of the system (13) is modelled using a finite
volume version of central differences on dual cells, see [12] for details, and is added to the
predictor and corrector steps of the MacCormack scheme

+l A
Wit = wl - o |an5x +g" SY) + o |V1sc( w) (29)
©j ij
77 1 n+3 . n+ n+ 1 n+
wit _i{w;;erij Q Z( 5% tgm 25Y)}+§ Visc(w;; 2), (30)
| ij | | ij |
WZ+1 _ %+1 + (TVD)Wil]n + (TVD)W”n , (31)
where w%“ is the corrected numerical solution at time ¢,41 and |Q;;| denotes the face area
of the finite volume Q;;. The vectors f,, = F,, and g,, = F,,, of the inviscid numerical
fluxes through the edges I'7, m =1,... ,4, of the cell Q;; at time ¢,, are evaluated as
' =f(wi ;) £ =f(wiji1) f =1 = f(wj) ,
gl =g(wii), g =s8(Wwjn)., 85=gi=gWw))

and at time thy1 as

n4 % _ n+ % n4 i n+ % n4 i n4 % n+i
f; 2 =16 7= f(wij ) f; = f(Wz;l?') ) £, * = f(wijfi) )
nt+l  ntl n+3 n+ 3 n+x n+i n+3
g ‘=8 ° :g(wij *) g3 * :g(wi—li‘) ) g ° :g(wij—i) .
S, = (8%,58%)T are cell side normal vectors to the edges I, where we designate

S1 =841, S2 = Sj;11, S3 = S;_1; and S4 = §;; 1. The added one-dimensional
TVD-type viscosity term (TVD) J ™ in the direction of the change of index i in (31), proposed

by Causon [6], is given by

(TVD) yy [P+ + Pyl (Wit —wiy) — [P+ Pl (wih —wity;) (32)
1
+ + +
P = P(rij) = 5 C(viy) 1 = @(rij)] (33)
T-+- _ (W?—‘rlj W1j7wj Wzn—lj) ro— (Wzn-t,-lj W”,Wj W?—lj)
" (Wzn-&-lj W177Wz+17 W?]) 7 " (W:Lj - Wi—lj’ W?j_ Wzn—lj)

Note that in these relations (-, -) denotes the scalar product of two vectors. The flux limiter
@(rli]) and the function C(v;;) in relation (33) are defined as
min 27"1#,1 for »i- >0 vii(1 —v;) for v, <
(b(’r':t) _ ( J ) 7 ( 17) _ { ]( .7) J = (34)
0 for £ <0 0.25 for v >

)
1] -

N[ N[
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and v;; is given by the formula

At
Al‘ij

Vij = (laiz| + aij) (35)
where u;; is the velocity and a;; is the local speed of sound. The time step At is given by
the following CFL condition (36) and Ax;;, Ay;; are the approximations of the lengths of
the cell 2;;. For the added dissipative term (TVD)W%J?‘ in the equation (31), similar formulae
with the shifting of index j are used.

A necessary CFL stability condition of the explicit two-step MacCormack scheme in
non-dimensional form is expressed by the restriction for the time step

At < CFL

-1

: (36)

where |u;;| + a;; and |v;5] + a;; are maximum absolute values of the eigenvalues of Ja-
cobian matrices A(w;;) = 0f(w;;)/0w;; and B(w;;) = 0g(w,;)/0w;; and the constant
CFL € (0,1).

5. Numerical results

For the turbulent leakage flow computation in the considered two-dimensional model of
the undesirable clearance gap caused by the incorrect contact of rotor teeth screw surfaces,
Fig.5 (left), the relatively fine structured quadrilateral grid with 190x64 cells was used. The
detail of the computational grid is shown in Fig.5 (right). In order to resolve the boundary
layer with sufficient accuracy, the computational grid was refined in the direction normal to
the walls. The width of the first cell at the wall is

0.05

Ay, = (37)

and the other cells in the vicinity of the solid wall have the width given by the formula
Aysi1 = (14+A) Ay, . (38)

For this case we set A =0.17and s =1,...,28.

The problem was solved for the reference Reynolds number Re,, = 3900 as a non-
stationary turbulent compressible Newtonian fluid flow considering the following non-
dimensional boundary conditions. At the inlet 09, the total pressure py; = 1, the total
temperature ﬁn =1, the inlet angle oy, af/an =0 and 23:1 Tijn; =0, 4= 1,2 were pre-
scribed. At the outlet 0Q0, the static pressure p, = 0.5, 8?/8n =0 and Z?:l Tijn; =0,

i =1,2 were kept. On the solid walls 9} and GQ%A, the boundary conditions w = 0,
¥ =0 and 8T /8n = 0 were satisfied. n is the outward unit normal vector to the boundary.
Note that for this turbulent computation the same computational grid, the same refer-
ence Reynolds number and the same boundary conditions as for the laminar computation,
see [13], were used. The free stream conditions over the entire computational domain Q C R?
were imposed to initialize the explicit TVD MacCormack scheme (29)—(31). The parameter
CFL = 0.5 in the stability condition (36) was chosen.
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Fig.5: Computational domain Q C R? (left) and detail of the structured
quadrilateral grid with 190x64 cells (right)
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Fig.6: Isolines of the Mach number (left) and their detail (right)
for the turbulent flow computation
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Fig.7: Velocity magnitude distribution in [m/s] (left) and its
detail (right) for the turbulent flow computation

Fig. 6 displays the isolines of the Mach number distribution in the gap plotted with step
AM = 0.02 and computed at time ¢ = 8.26-107° s using the numerical method described in
this study. The velocity magnitude distribution at the same time is shown in Fig.7. It
is obvious that the leakage flow in the two-dimensional model of the gap caused by the
incorrect contact of rotor teeth screw surfaces is transonic (Mpyax ~ 1.6) for the prescribed
pressure ratio Pinlet/Poutlet = 2 but without shock waves.
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Fig.8: Isolines of the static pressure in [Pa] (left) and the static pressure distribution
along a middle streamline (right) for the turbulent flow computation

The isolines of the static pressure plotted with step Ap = 3500 Pa and the static pressure
distribution along a middle streamline of the gap computed at time t = 8.26-10~°s using
the turbulent flow computation are visualized in Fig.8. It can be seen that the prescribed
pressure ratio Pinlet/Poutlet = 2 is satisfied.

For reference only, the isolines of the Mach number distribution in the two-dimensional
computational model of the gap plotted with step AM = 0.02 at times ¢; = 2.798-107%s,
to = 2.845-107%s and t3 = 2.916-10~*s obtained using the laminar flow computation pre-
sented in [13] are shown in Fig.9. The non-stationarities (the changes in the shape of the
wake) can be observed in the laminar case and the maximum values of the Mach number
oscillates within the interval M., € (1.1,1.48). Fig. 10 displays the isolines of the static
pressure plotted with step Ap = 3500 Pa and the static pressure distributions along a middle
streamline of the two-dimensional computational model of the gap at times t; = 2.798-107%s,
to = 2.845-10"%s and t3 = 2.916-10~* s gained using the laminar flow computation presented
in [13].

The value i = 0.0445 kgm_lsf1 of the mass flow rate per unit height through the nar-
rowest position of this two-dimensional computational model of the undesirable gap caused
by the incorrect contact of rotor teeth screw surfaces was determined for the turbulent flow
computation. For completeness’ sake, the following graph of the values of the mass flow
rate per unit height through this model of the gap in dependence on the time was plotted,
Fig. 11, for the laminar flow computation presented in [13].

6. Conclusions

The preliminary analysis of the incorrect contact of screw-type machine rotor teeth sur-
faces caused by a parallel displacement of the male rotor axis is described in this study.
It is shown that the curve contact of screw surfaces by their correct meshing changes into
the point contact by their incorrect touch. The simplified two-dimensional computational
model of the undesirable gap caused by this incorrect contact of rotor teeth screw surfaces
is created by the authors and the numerical method for the statistically steady turbulent
computation of the leakage flow through this two-dimensional model of the gap based on the
cell-centred finite volume formulation of the explicit two-step MacCormack scheme defined
on a structured quadrilateral grid is presented.
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Fig.9: Isolines of the Mach number (left) and their detail (right)
for the laminar flow computation

The original results computed using the numerical code developed by the author demon-
strate that the leakage flow through the two-dimensional model of the undesirable clearance
gap of 100 um wide caused by the incorrect contact of rotor teeth screw surfaces is transonic
(Mmax = 1.6) for the prescribed pressure ratio piniet/Poutlet = 2 but without shock waves
typical for transonic flows [1] at macroscales. That is probably result of the viscous fluid
flow in the very narrow channel, where the viscous forces prevail over the inertial forces. The
value of the mass flow rate per unit height through this two-dimensional model of the gap is
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Fig.10: Isolines of the static pressure in [Pa] (left) and the static pressure distributions
along a middle streamline (right) for the laminar flow computation

determined. The presented numerical method combined with the algebraic Baldwin-Lomax
turbulence model gives satisfactory results in comparison with the non-stationary results
obtained using the laminar flow computation. Further, the numerical method is able to
work also on the computational grid refined near the walls without numerical oscillations.

A key non-dimensional parameter for gas microflows is the Knudsen number, which
is defined as the ratio of the mean free path A over a characteristic geometric length L.
According to [3], the Knudsen number is related to the Reynolds and Mach numbers as
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follows

Kn

A wkm M
I V72 R (39)

All numerical computations presented in this article were performed for Re,, = 3900. This
value of the reference Reynolds number leads to Kn < 5-1074, i.e. the fluid can be considered
as a continuum and the application of the mathematical model described by the system of
the Favre-averaged Navier-Stokes equations is acceptable in our case.

This study is another step of a longer term aim to understand the fluid mechanical effects
in screw-type machines.
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