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ADDITIONAL CONTRIBUTION TO THE PROBLEM
OF SELF-EXCITED SYSTEMS

HAVING SEVERAL UNSTABLE VIBRATION MODES

Radoslav Nabergoj*, Aleš Tondl**, Horst Ecker***

This contribution is based on paper [1] in which a three-mass chain system, excited
by van der Pol type excitation, has been investigated for the case when two different
unstable vibration modes can occur. Here, the efficiency of tuning the system using
a single-frequency parametric excitation by unifying the conditions for suppressing
both vibration modes is investigated. The suppressing efficiency is not high, especially
when the system is close to be tuned into a so-called ‘internal resonance’. It seems
that the best way for vibration suppression is the combination of passive and active
means (using parametric excitation).

Key words : self-excitation of van der Pol type, parametric excitation due to spring
stiffness variation, self-excited vibration with several modes

1. Introduction

In paper [1] a self-excited three-mass chain system has been analysed. Two upper masses
(m1, m2) are self-excited by flow, which is expressed by a van der Pol model. The motion
of the foundation mass (m3) is damped and the elastic mounting exhibits a parametric
excitation due to a harmonically changing component of the spring stiffness (see Figure 1).
The mass deflections are denoted by yj (j = 1, 2, 3) and the spring stiffnesses by k1, k2,
k3 = k0 (1 + ε cosω t). This system is governed by the equations :

m1 ÿ1 − (b1 − d1 y
2
1) ẏ1 + k1 (y1 − y2) = 0 ,

m2 ÿ2 − (b2 − d2 y
2
2) ẏ2 − k1 (y1 − y2) + k2 (y2 − y3) = 0 ,

m3 ÿ3 + b3 ẏ3 − k2 (y2 − y3) + k3 y3 = 0 .

(1)

In Ref. [1] the following parameters were considered : k1 = k2 = k0 = k, m1 = m2 = m,
m3 = m/2.

The aim of the previous analysis [1] was to investigate the effect of parametric exci-
tation, because in case of systems where only a single vibration mode is unstable, there
exists the possibility of even fully suppressing self-excited vibrations of the van der Pol type
(see [2]–[8]). The results of the investigation show, that for systems where several vibration
modes can occur, only a single vibration mode can be suppressed with a single-frequency
parametric excitation.
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For several alternative parameter values, the numerical analysis has shown that a single
frequency vibration prevails, i.e., the system vibrates with one mode although this vibration
is not the only possible one. When changing the parametric excitation frequency, the vibra-
tion with a given mode can be fully suppressed for a certain driving frequency but, in this
case, another vibration mode is simultaneously initiated. Furthermore, a double-frequency
parametric excitation was considered, with frequencies corresponding to natural frequencies,
where, under certain conditions, the corresponding mode could be suppressed. This study
wasn’t a full success, either.

Further investigations were suggested for tuning the normal mode frequencies of the
system such that Ω2 − Ω1 = Ω3 − Ω2, with the intention to achieve the suppressing effect
of both vibration modes with a single-frequency parametric excitation [9]. An additional
contribution to the analysis of such a system is here presented.

Fig.1: Schematic representation of the system with parametric
excitation at the base stiffness element

2. Enhanced system

In order to unify the conditions for suppressing both vibration modes, i.e. Ω2 − Ω1 =
= Ω3 − Ω2, only some changes in the mass ratio are required to fulfil the condition for the
natural frequencies of the abbreviated system. Let m1 = m, m2 = m/μ, m3 = 2m, and for
μ = m2/m1 such a value will be found in order to meet the above condition.

Using time transformation ω0 t = τ (ω0 =
√
k/m) the following equations are obtained :

y′′1 − (β1 − δ1 y
2
1) y

′
1 + y1 − y2 = 0 ,

y′′2 − (β2 − δ2 y
2
2) y

′
2 + 2μ y2 − μ (y1 + y3) = 0 ,

y′′3 + κ y′3 −
1
2
y2 +

(
1 +

1
2
ε cos ν τ

)
y3 = 0 ,

(2)

where βk = bk/mk ω0, δk = dk/mk ω0, for k = 1, 2 and κ = b3/m3 ω0, ν = ω/ω0.

System (2) can be transformed into the quasi-normal form :

x′′s + Ω2
s xs +

3∑
k=1

(Θsk x
′
s +Qsk xs cos ν τ) = 0 , (s = 1, 2, 3) (3)
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using the transformation :
y1 = a11 x1 + a12 x2 + a13 x3 ,

y2 = a21 x1 + a22 x2 + a23 x3 ,

y3 = a31 x1 + a32 x2 + a33 x3 ,

(4)

where :
a1k = 1 ,

a2k =
μ (1 − Ω2

k)
(1 − Ω2

k) (2μ− Ω2
k) − 1

2μ
,

a3k =
1
2μ

(1 − Ω2
k) (2μ− Ω2

k) − 1
2μ

,

(5)

The natural frequencies of the abbreviated system are given by the equation :∣∣∣∣∣∣
1 − Ω2 −1 0
−μ 2μ− Ω2 −μ
0 − 1

2 1 − Ω2

∣∣∣∣∣∣ = (1 − Ω2)
[
Ω4 − (1 + 2μ)Ω2 +

1
2
μ

]
= 0 , (6)

from which it follows :

Ω2
1 = μ+

1
2
−
√
μ2 +

1
2
μ+

1
4
,

Ω2
2 = 1 ,

Ω2
3 = μ+

1
2

+

√
μ2 +

1
2
μ+

1
4
.

(7)

To determine μ such that the condition Ω2 − Ω1 = Ω3 − Ω2 holds, the following relations
are used :

Ω1 + Ω3 = 2 ,

Ω2
1 + Ω2

3 = 1 + 2μ ,

Ω2
1 Ω2

3 =
1
2
μ .

(8)

From above we obtain μ = 0.8486122, Ω1 = 0.4095661, Ω2 = 1, Ω3 = 1.5904339,
ν = 0.590434 .

Parameter values of β1, β2 and κ were chosen such that the system is unstable in two
vibration modes, which are the first and third mode in this case. In this respect, the
aim of the previous analysis [1] was to investigate the effect of parametric excitation in
case of systems, where only a single vibration mode is unstable. In this case, there exists
even a possibility of full suppression of the self-excited vibration (see [2], [3], . . . ). The
results of investigation in [1] show that, for systems where more vibration modes can occur,
only a single vibration mode can be suppressed by means of a single-frequency parametric
excitation.

3. Results of numerical solution

Equations (2) have been solved numerically, but the results are presented in quasi-normal
coordinate using the inverse relations of (4). The parameter values of the examples consid-
ered are shown in Table 1.
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Figure # κ β1 β2 δ1 δ2 ε ν
2 0.15 0.05 0.05 0.50 0.50 0.15 variable
3 0.15 0.05 0.05 0.50 0.50 0.25 variable
4 0.15 0.05 0.05 0.50 0.50 variable 0.590434
5 0.10 0.04 0.02 0.50 0.50 0.15 variable
6 0.10 0.04 0.02 0.50 0.50 0.25 variable
7 0.10 0.04 0.02 0.50 0.50 variable 0.590434
8 0.15 0.05 0.05 0.50 0.50 0.15 0.590434
9 0.10 0.04 0.02 0.50 0.50 0.15 0.590434

Tab.1: Values of system parameters for numerical simulation

For constant parameter values of κ, β1, β2, δ1, δ2, results are shown for extreme values
of quasi-normal coordinates (denoted as [xk], k = 1, 2, 3) as a function of the parametric
excitation frequency ν, for ν = Ω2 − Ω1 = Ω3 − Ω2 = 0.590434 and for varying ε.

Figure 2 shows the extreme deflections of quasi-normal coordinates as a function of ν,
with parameter values as shown in Table 1. We can see that only a slight reduction occurs
at ν = Ω2 − Ω1 = Ω3 − Ω2 = 0.590434 for [x2], [x3], but [x1] increases. A similar situation
is observed at ν = Ω3 − Ω1 = 1.180868 . The strong parametric resonance at ν = 2 Ω1 =
= 0.819132 for [x1] results in full suppression of [x3]. A similar phenomenon happens at
ν = 2 Ω2 = Ω1 + Ω3 = 2.000000, but only a minor decrease of [x3] occurs. Moreover, [x2] is
small only at ν = Ω2 − Ω1 = 0.590434 while it becomes larger at ν = Ω2 + Ω3 = 2.590434 .
From the condition Ω2 − Ω1 = Ω3 − Ω2 it follows, that Ω1 + Ω3 = 2 Ω2, which means,
that the parametric resonance of the second kind (combination resonance) merges with the
parametric resonance of the first kind. There is a certain similarity with the case of a system
tuned to the so-called ‘internal resonance’, which can influence the behaviour of the system.

Figure 3 presents results for a higher value of the parametric excitation amplitude ε,
compared to the previous system. The results obtained are very similar, but the parametric
resonance for [x1] and the suppression effect on [x3] are more pronounced. This is also
valid for [x2]. Figure 4 shows the effect of increasing/decreasing the intensity of parametric
excitation for ν = Ω2−Ω1 = Ω3−Ω2. We can see that by increasing ε the extreme deflection
[x3] decreases, but [x1] increases. When ε exceeds the threshold value of 0.4, the vibration
intensity increases at all vibration modes, especially for the first and the second mode.

Figures 5 and 6 show the results for smaller values of β1, β2 and κ. Both cases differ only
by the parametric excitation amplitude ε. The results are very similar to those presented
in Figures 2 and 3. Figure 7 shows the effect of ε. When comparing it with Figure 4 we
can see a very similar behaviour; only the boundary of the substantial change in vibration
intensity and character lies at a slightly lower value of parametric excitation amplitude.

Figures 8 and 9 show the time histories for [x1], [x2] and [x3] at ν = Ω2−Ω1 = Ω3−Ω2 =
= 0.590434 . We can see that the system in both cases vibrates with dominant components
corresponding to the first and third vibration modes, i.e. the double-frequency vibration
occurs.

4. Conclusions

The efficiency of self-excited vibration quenching by using parametric excitation is smaller
for the case when the equilibrium state is unstable to more than one vibration mode, in
comparison with the case when only one vibration mode can be initiated. Although the
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Fig.2: Extreme values [x1], [x2] and [x3] of normal mode vibration amplitudes x1,
x2 and x3 versus applied parametric excitation frequency ν for κ = 0.15,
β1 = 0.05, β2 = 0.05, δ1 = 0.50, δ2 = 0.50 and ε = 0.15
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Fig.3: Extreme values [x1], [x2] and [x3] of normal mode vibration amplitudes x1,
x2 and x3 versus applied parametric excitation frequency ν for κ = 0.15,
β1 = 0.05, β2 = 0.05, δ1 = 0.50, δ2 = 0.50 and ε = 0.25
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Fig.4: Extreme values [x1], [x2] and [x3] of normal mode vibration amplitudes x1,
x2 and x3 versus parametric excitation amplitude ε for κ = 0.15, β1 = 0.05,
β2 = 0.05, δ1 = 0.50, δ2 = 0.50 and ν = 0.590434
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Fig.5: Extreme values [x1], [x2] and [x3] of normal mode vibration amplitudes x1,
x2 and x3 versus applied parametric excitation frequency ν for κ = 0.10,
β1 = 0.04, β2 = 0.02, δ1 = 0.50, δ2 = 0.50 and ε = 0.15
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Fig.6: Extreme values [x1], [x2] and [x3] of normal mode vibration amplitudes x1,
x2 and x3 versus applied parametric excitation frequency ν for κ = 0.10,
β1 = 0.04, β2 = 0.02, δ1 = 0.50, δ2 = 0.50 and ε = 0.25
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Fig.7: Extreme values [x1], [x2] and [x3] of normal mode vibration amplitudes x1,
x2 and x3 versus parametric excitation amplitude ε for κ = 0.10, β1 = 0.04,
β2 = 0.02, δ1 = 0.50, δ2 = 0.50 and ν = 0.590434
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Fig.8: Time series of normal mode vibration amplitudes x1, x2 and x3 for κ = 0.15,
β1 = 0.05, β2 = 0.05, δ1 = 0.50, δ2 = 0.50, ε = 0.15 and ν = 0.590434

Fig.9: Time series of normal mode vibration amplitudes x1, x2 and x3 for κ = 0.10,
β1 = 0.04, β2 = 0.02, δ1 = 0.50, δ2 = 0.50, ε = 0.15 and ν = 0.590434

single-frequency vibration prevails, a double-frequency vibration occurs at parametric exci-
tation frequency ν = Ω2 − Ω1 = Ω3 − Ω2. The extreme deflections of individual vibration
modes are smaller than those of corresponding single-frequency vibrations but this does not
lead to a substantial reduction of vibration intensity.
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The goal of unifying the conditions for suppressing two different vibration modes has
not been successful, since it led to a certain tuning of the system into so-called ‘internal
resonances’. The best way for vibration quenching seems to be the simultaneous combination
of two different means: the passive reduction of substantial vibrations for one possible mode,
combined with the parametric excitation of the stiffness variation.
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