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VISCOELASTIC PROPERTIES OF FILLED RUBBER.
EXPERIMENTAL OBSERVATIONS

AND MATERIAL MODELLING

Bohdana Marvalova*

The paper presents an application of a phenomenological material model for the
viscoelastic stress response at large strains. The model is used for the simulation
of carbon-black filled rubber in monotonic and cyclic deformation processes under
isothermal conditions. The material stress response is decomposed into two constitu-
tive parts which act in parallel : an elastic equilibrium stress response and a rate-de-
pendent viscoelastic overstress response. The response of a particular filled rubber
in the cyclic and relaxation tests was measured experimentally. The parameters of
the constitutive functions are determined from the experimental data by an identifi-
cation process employing nonlinear optimization methods. The paper concludes with
a simulation by FEM of the cyclic loading of a simple rubber specimen.
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1. Introduction

Rubber materials are applied in various branches of mechanical engineering because of
their damping properties. One of such applications is the cushion of tram-wheels by rub-
ber segments manufactured by Bonatrans Bohumin. During the operation the segments
are under the temporally constant compressive preload due to the shrinkage between the
corpus of wheel and the hoop and under the dynamic compressive and shear loads due to
the transfer of the vehicle weight during the wheel rotation and the transfer of torque. The
static preload leads to compressive permanent set of segment and the periodic deformation
leads to hysteresis behaviour and heat generation which considerably affects properties of
rubber. The modelling and FEM calculation of the structural response requires a constitu-
tive model which captures the complex material behaviour. The present paper focuses on
the viscoelastic behaviour of the filled rubber used for the cushion segments in cyclic and
relaxation experiments.

2. Material behaviour and modelling

The experimentally observed mechanical response of a filled rubber may be subdivided
into four fundamentally different effects [1] which together characterize the typical overall
response :
– a dominating elastic ground-stress response characterized by large elastic strains,
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– a finite viscoelastic over-stress which governs rate-dependent effects such as relaxation
and creep phenomena,

– finite plastoelastic over-stress behaviour responsible for rate- independent hysteresis phe-
nomena associated with relaxed equilibrium states,

– a damage response within the first loading cycles which induces a considerable stress
softening.

The ground-stress response is usually modelled in the phenomenological framework of
finite elasticity by Mooney-Rivlin or Ogden models [2–5], or by Arruda and Boyce model [6]
in terms of the micromechanically based kinetic theory of polymer chain deformations.

Finite viscoelastic overstress response is apparent in creep and relaxation tests. Cyclic
loading tests show a typical frequency-dependent hysteresis. The width of the hysteresis
increases with increasing stretch rates. The constitutive theory of finite linear viscoelas-
ticity is a major foundation for modeling rate-dependent material behaviour based on the
phenomenological approach. This general theory is formulated using functionals with fading
memory properties. The stress is decomposed into an equilibrium stress that corresponds to
the stress response at an infinite slow rate of deformation and a viscosity-induced overstress.
The overstress is expressed as an integral over the deformation history and a relaxation
function is specified as a measure for the material memory [7–10]. The thermodynamic
consistency requires the relaxation function to be positive with negative slope and to pos-
sess a positive curvature [11]. Within this restriction certain number of decreasing expo-
nentials can be superimposed, referred as a so-called Prony series. Such model requires
a large number of material parameters that are difficult to estimate. Another innovative
approach [11, 12] uses compact relaxation function based on power law, the Mittag-Leffler
function [13], in describing Payne effect, and involves only a very few number of material
parameters.

There exists another possibility of constructing finite strain models of viscoelasticity by
considering the multiplicative decomposition of the deformation gradient into elastic and
inelastic parts [14–18,26]. In this approach, a suitable hyperelasticity model is employed to
reproduce the elastic responses represented by the springs, while the dashpot represents the
inelastic or the so-called internal strain. Its temporal behavior is determined by an evolution
equation that is consistent with the second law of thermodynamics.

The third phenomenological effect observed in filled rubberlike materials is the partial
rate-independent response. This phenomenon can be identified as a hysteresis of the relaxed
equilibrium response within cyclic deformation processes and is usually denoted as a plastic
effect [1]. If this effect is significant enough, the theory of viscoplasticity applies. If the
equilibrium hysteresis appears to be negligible, a viscoelasticity theory is sufficient [19].

The important phenomenon in filled rubbers is the typical stress softening during the
first loading cycles. This so-called Mullins effect can be interpreted as a damage effect
where the evolution of the damage depends critically on the maximum stretch reached in
the deformation history. A phenomenological model of Mullins effect was proposed by Ogden
and Roxburgh [20] and recently by Marckmann [21].

3. Model for finite viscoelasticity

The material model of finite strain viscoelasticity used in our work follows from the
concept of Simo [7] and Govindjee & Simo [22]. The finite element formulation of the
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model was elaborated by Holzapfel [23] and used by Holzapfel & Gasser [24] to calculate
the viscoelastic deformation of fiber reinforced composite material undergoing finite strains.
The model was incorporated into the new version of ANSYS 10.

The model is based on the theory of compressible hyperelasticity with the decoupled rep-
resentation of the Helmholtz free energy function with the internal variables (Holzapfel [4],
p. 283) :

Ψ(C,Γ1, . . . ,Γm) = Ψ∞
VOL(J) + Ψ∞

ISO(C̄) +
m∑

α=1

Υα(C̄,Γα) , C̄ = J−2/3 C . (1)

The first two terms in (1) characterize the equilibrium state and describe the volumetric
elastic response and the isochoric elastic response as t → ∞, respectively. The third term
is the dissipative potential responsible for the viscoelastic contribution, C is right Cauchy-
Green strain tensor and J is the determinant of the deformation gradient. The derivation
of the 2nd Piola-Kirchhoff stress tensor S with volumetric and isochoric parts :

S = 2
∂Ψ(C,Γ1, . . . ,Γm)

∂C
= S∞

VOL + S∞
ISO +

m∑
α=1

Qα (2)

where S∞
VOL and S∞

ISO is the volumetric and the isochoric stress response respectively and
the overstress Qα is stress of 2nd Piola-Kirchhoff type.
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VOL = J

dΨ∞
VOL(J)
dJ

C−1 , S∞
ISO = J−2/3 Dev

[
2
∂Ψ∞

ISO(C̄)
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]
, (3)

Qα = J−2/3 Dev
[
2
∂Υα(C̄,Γα)

∂C̄

]
, (4)

Dev(·) = (·) − 1
3
[(·) : C] C−1 (5)

where Dev(·) is the deviatoric operator in the Lagrangian description. Motivated by the gen-
eralized Maxwell rheological model (Fig. 1), the evolution equation for the internal variable
Qα takes on the form (6).

Q̇α +
Qα

τα
= ṠISOα , (6)

SISOα = J−2/3 Dev
[
2
∂Ψ∞

ISOα(C̄)
∂C̄

]
, (7)

ΨISOα(C̄) = β∞
α Ψ∞

ISO(C̄) , (8)

SISOα = β∞
α S∞

ISO(C̄) . (9)

β∞
α ∈ (0,∞) in the expressions (8) and (9) is the nondimensional strain energy factor [7, 22]

and is the relaxation time. The closed form solution of the linear evolution equation is given
by the convolution integral and the recurence updated formula [4] for the internal stress
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− T

τα

)
Qα0 +

T∫
0
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(Qα)n+1 = exp(2 ξα) (Qα)n + exp(ξα)β∞
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ISO)n] , ξα = − Δt

2 τα
.

(10)
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The material is assumed to be slightly compressible, the volumetric and isochoric (Mooney-
Rivlin) parts of Helmholtz free energy function were chosen in the form

Ψ∞
VOL(J) =

1
d

(J − 1)2 , Ψ∞
ISO(C̄) = c1 (Ī1 − 3) + c2 (Ī2 − 3) , (11)

where Ī1 and Ī2 are first and second modified invariants of C̄ and the parameters c1, c2 and d
are to be determined from experiments. The viscoelastic behavior is modeled by use of α = 2
relaxation processes with the corresponding relaxation times τα and free energy factors β∞

α .
The stretch ans the second Piola-Kirchhoff stress in the loading direction of test specimens
were determined from experimental measurements. The seven material parameters were
calculated by nonlinear optimization methods in Matlab.

Fig.1: Maxwell rheological model

4. Experiment

The experiments were conducted in the laboratories of IT AV CR in Plzen and of TUL
in Liberec. The specimens of filled rubber BAE 8534 used for compression tests were rectan-
gular in shape, 47×23×25mm. The rubber has the shear modulus of about 1 MPa and was
manufactured by Rubena Hradec Kralove. In order to study the fundamental viscoelastic
behavior of filled rubber, an experimental scheme was applied to each specimen. The scheme
comprises of cyclic compression tests, multi-step relaxation tests and simple relaxation tests.
All tests were performed at constant temperature under strain control and the experimental
data were recorded by a personal computer. Prior to an actual test, each virgin specimen
was subjected to a pre-loading process to remove the Mullins’ softening effect. Mullins’
effect is apparent on Fig. 2, where the hysteresis and the permanent set are also visible.
This softening effect is partially recovered after a period of time depending on material in
question (approximately one week in our case).

4.1. Cyclic tests at different strain rates

To study the material rate-dependence, specimens were subjected to cyclic compressive
loading with constant strain rates. Fig. 3 presents the stress-strain responses as obtained
from cyclic compression tests. The tests of compression was conducted with six different
strain rates. A comparison of the stress responses indicates a strongly pronounced rate-
dependent behaviour during loading, whereas a much weaker rate-dependence is observed
during unloading. In addition, the presence of hysteresis and the permanent set is visible.
All responses during loading suggest a diminishing trend in the increase of the stress with
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Fig.2: Mullins’ effect; step cyclic loading; left – specimen without pre-loading,
right – specimen after pre-loading to the maximum strain

Fig.3: Cyclic tests at different strain rates; left – experiment, right – fitting
of Mooney-Rivlin hyperelastic model to experimental data

increasing strain rate. Such a behaviour can be related to the approach of the material
towards the so-called instantaneous stress response.

4.2. Relaxation tests

The relaxation behaviour at different strain levels is examined in detail through single-
step and multi-step relaxation tests at Fig. 4 and 5. In the compression tests, a strain rate
of 0.05mm/s was applied during the loading path. The stress relaxation was being recorded
for 1200 s. Fig. 4 shows the time histories of force at different strain levels in compression
regime. All the curves reveal the existence of a very fast stress relaxation during the first
10 seconds after loading followed by a very slow rate of relaxation that continues in an
asymptotic sense. This conforms with observations reported by Haupt and Sedlan [19].
Comparing the results obtained at different strain levels, it can be seen that relaxation tests
conducted at higher strain levels possess larger overstresses and subsequently show a faster
stress relaxation than those at lower strain levels with lower overstresses as reported also by
Amin [25]. In the classical approach, equilibrium states are reached if the duration of the
relaxation periods is infinitely long. Thus, the stresses measured at the termination points
of the relaxation periods are approximate values of the equilibrium stress. The difference
between the current stress and the equilibrium stress is the so-called overstress.
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Fig.4: Step relaxation time history Fig.5: Single relaxation time history

Fig.6: Fitting of the viscoelastic material model to experimental data

The constitutive model presented in the Section 3 was compared with the experimental
data. The prediction of the step relaxation test is shown in Figure 6. These two graphs
indicate that the model predicts the equilibrium stress and the uploading and unloading
experimental data very well. However, for higher strain values, the behaviour during re-
laxation is not predicted well. The reason for this is that the model predicts the same
time-dependence for different strain levels, but as was discussed above, the filled rubber
exhibits faster relaxation during higher strains [26].

5. Finite element simulation

The cyclic loading test of the viscoelastic material at finite strains was simulated by
FEM in Comsol Multiphysics 3.2 and in ANSYS 10. The material model described above
was implemented into Comsol Multiphysics. The Structural Mechanics and PDE modules
were used for the calculation of time dependent stresses in a rubber block loaded by time
dependent displacement. The time dependent loading and the resulting stresses are shown
at Fig. 7.

The ANSYS implementation based on Holzapfel viscoelastic model [9] uses the combi-
nation HYPER and PRONY options [29]. The parameters of the model were determined
from the results of the cyclic experiments using a nonlinear least squares method. The
capability of the material model to simulate the rate-dependent response of rubber is pre-
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Fig.7: Simulation of cyclic test in Comsol Multiphysics

Fig.8: Experimental measurement compared with
the simulation of the cyclic test in ANSYS

sented in Fig. 8 by comparing the stress calculated in ANSYS with experimental data. The
results show good correlation between simulation and experiment for slow strain rates in
compression. In general, the accuracy in predicting the experimental response was found to
be better for slow strain rates and in the unloading stage of compression.

6. Conclusion

The experimental investigation demonstrated the time dependent behaviour of the filled
rubber at large strains. The constitutive model used gives good quantitative agreement for
different strain rates cyclic and relaxational behaviour. The model is already incorporated
into finite element simulation. The incorporation of the viscoelastic effect into filled rubber
behavior is the first step toward the coupled thermo-viscoelastic model and toward the pos-
sibility to calculate by FEM the dissipative heating of segments used for the rubber-sprung
wheels. The improvement of the material model is achievable by considering nonlinear vis-
cosity phenomena in the constitutive model [25] and to introduce the history dependence of
viscosities [27] which leads to nonlinearly coupled equations. The effective relaxation times
depending on amplitude and temperature can be also applied [28].
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