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FLUID INDUCED INSTABILITY OF ROTOR SYSTEMS
WITH JOURNAL BEARINGS

Jǐŕı T̊uma*, Jan Biloš**

The paper deals with stability of the rotor vibration in a journal bearing. The vi-
bration signal, describing the rotor motion, is a complex signal. The real part of this
kind of signals is a rotor displacement in the X-direction while the imaginary part is
a displacement in the perpendicular direction, as we say in the Y-direction. A tool for
analysis is a full spectrum, which results from the Fourier transform of the complex
signal. The full multispectra of the rotor run up and coast down are employed to
evaluate a magnitude as a function of the rotor rotation speed. The multispectrum
slices serve to verification of the simplified mathematical model of a rotor system
and to analyze the rotor vibration using a procedure based on the Nyquist stability
criterion. As it is well known the self-excited vibration, called fluid induced vibration,
occurs when the rotor rotation speed crosses a certain threshold.
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1. Introduction

Full spectrum plots have recently received a great importance in diagnostics of rotors and
journal bearings thanks to research work that was done at Bently Rotor Dynamics Research
Corporation and Bently Nevada Corporation. Related work done in Korea and the People’s
Republic of China must be mentioned [1, 2].

The first research work dealing with the stability of the rotor vibration in journal bearings
was published by Newkirk in 1924 as it is mentioned by Tondl in his book [3] published
in 1965. The problem of the fluid-induced vibration was investigated by Muszynska and
Bently at Bently Rotor Dynamics Research Corporation [4, 5]. One of the latest review
of the work, which was done in this branch of science, is a paper published by Ecker and
Tondl [6]. The topic of the mentioned paper is focused at solving the problem how to prevent
the onset of the instability by control the bearing mount stiffness while increasing the rotor
rotational speed. Their approach is based on the numerical solution of motion equations
and establishing stability margins. The goal of the submited paper is drawing attention to
the methods used in the control theory.

The first part of this paper discusses the benefits of full spectra and describes how to use
full spectrum plots for analysing fluid-induced instabilities in a machinery diagnostic. The
second part is focused at the relationship of the experimental data and the simplified lumped
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parameter model of a rotor system. The control theory for closed-loop control systems is
applied to the analysis of the mechanical system stability.

2. Orbit and full spectrum theory

In contrast to the frequency spectrum of a real time signal the full spectrum is a tool for
processing complex signals. The real time signal gives information about position of a point
along an axis while the complex signal describes the position of a point in a plane, which is
called the complex plane. A complex number can be viewed as a point or a position vector
on a two-dimensional Cartesian coordinate system. The topic of this paper is focused at the
motion of rotors in journal bearings. The measurement instrumentation is shown in figure 1.
The proximity probes are a non-contacting device, which measures the displacement motion
and position of an observed rotor surface relative to the probe mounting location. Typically,
proximity probes used for rotating machinery measurements operate on the eddy current
principle, and measure rotor displacement motion and position relative to the machine bear-
ings or housing. In addition to the rotor displacements, a voltage pulse for each turn of the
rotor, called the Keyphasor R© signal is used primarily to measure rotor rotation speed and
serves as a reference for measuring vibration phase lag angle. It is an essential element in
measuring rotor slow roll bow or runout information.

Fig.1: Instrumentation arrangement Fig.2: Model of orbit construction

The real signal, describing position of a point along for example the X-axis, can be
constructed in a complex plane as a sum of two complex conjugate numbers or position
vectors, A and B, rotating in opposite direction at the same frequency ω. The complex
conjugate property means that the mentioned vectors are of the same length and their
initial phases are opposite. The resulting signal is a real harmonic signal (sine or cosine
function of time). If these vectors are not complex conjugate, then their sum as a function
of time forms an ellipse in the complex plane, called an elementary orbit. The principle
of the orbit construction is shown in figure 2. More than one pair of rotating position
vectors at the different frequencies result in the more complicated planar motion than the
elementary orbit. A tool for the decomposition of planar motion into the elementary orbits
is the Fourier transform.

The real part of the mentioned position vector sum is a time signal x(t), which describes
displacement of the journal centre relative to the sleeve center-line in direction of the real
axis, while the imaginary part is a time signal y(t), which describes displacement in direction
of the imaginary axis. The position vector end point is a complex function x(t) + j y(t) of
time, where j =

√−1 is the imaginary unity.

It is well known that the Fourier transform of the real signal is a complex conjugate
symmetric function of the frequency ω along ω = 0. This is a reason that the frequency
spectrum is plotted only for the positive value of the frequency. If the time domain signal
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is a complex signal then the frequency domain function is non-symmetric and the plot of
the magnitude of the complex numbers against the frequency is called a full spectrum. This
spectrum contains both the positive and negative frequencies.

3. Orbit and full spectrum measurements

To study motion of the rotor in a journal bearing the RK 4 Rotor Kit device, product of
Bently Nevada, was used. The proximity probes and the Keyphasor sensor belong to the in-
strumentation of Rotor Kit (see figure 3). The rotor centre-line motion can be analyzed only

in the plane that is perpendicular to the rotor axis.
The rotor rotates in the positive direction with re-
spect to the placement of the proximity probes and
their output signal polarity.

Fig.3: Bently Nevada Rotor Kit

The RPM profile determines the rotor opera-
tion condition. The run-up to the maximum of
2400RPM is the first stage of the test. Then the
test is continuing after a delay to the second stage
that is a coast-down. The maximum value of RPM
is below the first critical harmonic speed of the ro-
tor. The RPM as a time function is shown in fig-
ure 4. The time history of the journal displacement
in direction X, which is shown in figure 5, demon-

strates that self-excited vibrations occur when the rotor rotation speed increases and reaches
the certain value of RPM. These vibrations start to decay when the rotor rotation speed
decreases and reaches the other value of RPM, which is less than the RPM value for the
rotor run-up. It can be noted that the vibration decaying is slower and therefore it takes
longer than the self-excited vibration startup.

Fig.4: RPM time history Fig.5: X-axis displacement time history

To determine the relationship between the journal centre vibration frequency and the
rotor rotation speed, the frequency analysis of the journal centre vibration is performed.
A full multispectrum of the signal x(t)+j y(t), which is composed from full spectra for RPM
as the third axis, is shown in figure 6. This form of the 3D multispectrum is designated as a
waterfall plot. The multispectrum frequency axis is in Hz. The orders 1 and 2 of rotational
frequency form a line of individual spectrum peaks with frequency, which is determined by
the instantaneous RPM. The spectrum component with the frequency of the 1 ord is called
as a synchronous component.
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Fig.6: Full multispectrum of signal x(t) + j y(t) in Hz

Fig.7: Displacement x(t) and y(t) during 10 revolutions
at 2400 RPM beginning at 6.78 s

The analysis in the term of revolutions and orders gives better and clearer information
about the rotor behavior than the analysis in term of time or frequency in Hz. After
resampling both the signals x(t) and y(t) to the sampling frequency, which is proportional
to the rotational frequency, the rotor displacement in the both directions is a function
of revolution. The real and imaginary part of the complex resampled signal is shown in
figure 7. 10 revolutions of the rotor correspond to less than 5 runs, called precession, along
the elementary orbit. The shapes of the orbit for the different values of RPM are shown in
figure 8 and 9.

The frequency of the dominating component in the overlaid full multispectra in figure 10
is equal to 0.475 ord. This subharmonic component in relation to the rotor rotational fre-
quency is corresponding to rotor precession. As the frequency of the dominating component
is positive what means that the sum of the position vectors, A and B (see figure 2) de-
pend mainly on the position vector A, the precession is forward. The waterfall plot of the
multispectrum with the frequency axis in order is shown in figure 11. As the peaks of
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the subharmonic component lie on a straight line, which is parallel to the RPM axis, the
frequency in order of the excited vibration is independent on the rotor rotational speed.

The magnitude of vibrations at the frequency of the 1 ord is ten times greater than the
magnitude of vibrations at the frequency of the 2 ord. The synchronous component is a
response to the natural unbalance of the rotor. The second and higher harmonics of the
rotor rotational frequency generally result from a misalignment of the rotor and driving
motor but this phenomenon is insignificant for the rotor under test.

Fig.8: Orbit plot beginning at 0 s Fig.9: Orbit plot beginning at 6.78 s

Fig.10: Full multispectrum of signal x(t) + j y(t) in orders

Fig.11: Full multispectrum of signal x(t) + j y(t) in order as a waterfall plot
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4. Lumped parameter model of the rotor system

There are many ways how to model a rotor system, but this paper prefers an aproach,
which is based on the concept developed by Muszynska [4] and Bently Rotor Dynamics
Research Corporation [5]. The reason for this is that this concept offers an effective way to
understanding the rotor instability problem. However, this simple mathematical model is
inapplicable for solving practical technological problems. Another approach can be based on
the lubricant flow prediction using a FE method for Reynolds equation solution, see [9] for
instance. This approach does not allow to benefit of the dynamic system stability theory.

Let the rotor angular velocity is designated by Ω. It is assumed that the stator is fixed
while rotor is rotating at the mentioned angular velocity. This paper proposes to use complex
variables to describe motion of a rotor. The position of the journal centre in the complex
plane, which origin is situated in the bearing centre, is designated by a position vector r.

The internal spring, damping and tangential forces are acting on the rotor. The external
forces refer to forces that are applied to the rotor, such as unbalance, impacts and preloads
in the form of constant radial forces. All these external forces are considered as an input
for the mathematical model based on the mentioned concept [7]. The identical solution was
published by Tondl [8]. All these mentioned analyses are based on the same formula for
evaluation of the bearing forces.

The fluid pressure wedge is the actual source of the fluid film stiffness in a journal
bearing and maintains the rotor in equilibrium. These bearing forces can be modeled as
a rotating spring and damper system at the angular velocity λΩ, where λ is a parameter,
which is slightly less than 0.5 . The parameter λ is denominated by Muszynska [4] as the
fluid averaged circumferential velocity ratio. It is assumed that the rotating journal drags
the fluid in a space between two cylinders into motion and acts as a pump. It is easy to
understand that the fluid circular velocity is varying across the gap as a consequence of the
fluid viscosity : At the surface of the journal, the fluid circular velocity is the same as the
journal circumferential velocity and at the surface of the of the bearing, the fluid circular
velocity is zero. The angular velocity λΩ can be considered as the average angular velocity
of the fluid but this quantity is only a fictive value. In fact, the angular velocity of the
mentioned spring and damper system can be determined.

Fluid forces acting on the rotor in coordinates rotating at the same angular frequency as
the spring and damper system are given by the formula

Frot = K rrot +D ṙrot , (1)

where the parameters, K and D, are specifying proportionality of stiffness and damping to
the journal centre displacement vector rrot and velocity vector ṙrot, respectively. The spring
force acts opposite to the displacement vector. Assuming constant values of K and D

(isotropic rotor system) and independence of these parameters on the journal eccentricity,
the system is considered to be linear.

To model the rotor system, the fluid forces have to be expressed in the stationary coor-
dinate system, in which the journal centre displacement and velocity vectors are designated
by r and ṙ, respectively. Conversion of the complex rotating vector rrot to the stationary
coordinate system can be done by multiplication of this vector by exp(jλΩ t), which is the
same as multiplying the vector in the stationary coordinates by exp(−jλΩ t), see figure 12.
The relationship between the mentioned vectors in rotating and stationary coordinates are
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given by the formulas

rrot = r exp(−jλΩ t) ,

ṙrot = (ṙ − jλΩ r) exp(−j λΩ t) .
(2)

Fig.12: Average fluid velocity

Substitution into the fluid force equation results in the
following formula

F = K r +D ṙ − jDλΩ r , (3)

where the complex term jDλΩ r has the meaning of the force acting in the perpendicular
direction to the vector r and this force is called tangential. As the rotor angular velocity
increases, this force can become very strong and can cause instability of the rotor behavior.

As it was mentioned the rotor is under influence of the external forces, for instance
produced by unbalance mass or simply by gravity. This external perturbation force is
assumed to be rotating at the angular velocity ω, which is considered to be completely
independent on the rotor angular velocity Ω to obtain general solution [4, 5]. The unbalance
force, which is produced by unbalance mass m mounted at a radius ru and rotating at the
angular velocity ω, acts in the radial direction and has a phase δ at time t = 0

Fperturbation = mru ω
2 exp[j(ω t+ δ)] . (4)

The equation of motion for a rigid rotor rotating at the steady-state rotation speed and
operating in a small, localized region in the journal bearing is as follows

M r̈ = −K r −D ṙ + jDλΩ r +mru ω
2 exp[j (ω t+ δ)] , (5)

where M is the total rotor mass. After rearranging the ordinary linear differential equa-
tion (5), the equation of motion with constant coefficients is obtained

M r̈ +D ṙ + (K − jDλΩ) r = mru ω
2 exp[j (ω t+ δ)] . (6)

The solution of this type of equation is well known. It is assumed as a response vector
with magnitude A and phase α and rotating at the angular velocity ω

r = A exp[j (ω t+ α)] , ṙ = jωA exp[j (ω t+ α)] , r̈ = −ω2 A exp[j (ω t+ α)] . (7)

The magnitude and phase of the journal centre is given by the following formula

A exp(jα) =
mru ω

2 exp(j δ)
(K −M ω2) + jD (ω − λΩ)

. (8)

Let the unbalance force excitation frequency is the same as the rotor angular velocity
ω = Ω for the experimental data. Then the general non-synchronous model is converted to
the special synchronous model

A exp(jα) =
mru Ω2 exp(j δ)

(K −M Ω2) + jDΩ (1 − λ)
. (9)
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Fig.13: Transform to stationary coordinates

This solution (9) describes the rotor motion, which is shown in figure 8, with the relatively
small amplitude. The frequency of the dominating component in the frequency spectra for
the part of the signal record without self-exciting vibration is equal to the rotor rotational
frequency.

The rotor/fluid wedge bearing/system can be demonstrated as a servomechanism working
in the closed loop, which is shown in figure 13. The direct and quadrature dynamic stiffness
is introduced according to the acting force direction. To obtain the Laplace transform of the
mentioned dynamic stiffness, the imaginary variable jω is replaced by a complex variable s

Kdirect(s) = K +D s+M s2 , Kquadrature(s) = −jλΩD (10)

and the journal centre displacement can be evaluated in the form

r =
Fperturbation −Kquadrature(s) r

Kdirect(s)
. (11)

The individual transfer function 1/Kdirect(s) (direct dynamic compliance) is stable. The
feedback path in the closed-loop system acts as a positive feedback and introduces instabil-
ity for the closed-loop system. The gain of the positive feedback depends on the angular
velocity Ω. The closed-loop system is stable for the low rotor rotational speed. There is
a margin for the stable behavior. If the gain of the positive feedback crosses over a limit
value then the closed-loop becomes unstable. The properties of the unstable behavior can
be analyzed using the servomechanism in figure 13.

The stability of the closed-loop dynamic system is depending on the open-loop frequency
transfer function for

G0(jω) =
Kquadrature(jω)
Kdirect(jω)

=
−λΩD

ωD − j (K −M ω2)
. (12)

As it is known the closed-loop dynamic system is stable according to the Nyquist stability
criterion if, and only if, the locus of the G0(jω) function in the complex plane does not
enclose the (−1, 0) point as ω is varied from zero to infinity [10]. Enclosing the (−1, 0) point
is interpreted as passing to the left of the mentioned point. The G0(jω) locus for three
different values of the rotor angular velocity Ω is shown in Nyquist diagram in figure 14,
which is ploted as an ilustrating example for K/D = 100 rad/s. All the contour plots are
of the same shape. They are differing only in a scale and correspond to the stable, steady-
state and unstable vibration. When the steady-state vibration occurs, the stability margin



Engineering MECHANICS 77

Fig.14: Shaft/fluid wedge bearing/system as a servomechanism

is achieved. The locus of the G0(jω) function, describing the steady-state vibration, meets
the (−1, 0) point, therefore

G0(jωcrit) = −1 . (13)

An angular frequency, at which a system can oscillate without damping, is designated
by ωcrit. Substitution (13) into (12) results in formulas for the oscillating frequency

ωcrit =
K

M
and ωcrit = λΩ . (14)

It can be concluded that the frequency of the rotor subharmonic oscillation is the same as
the fluid average angular velocity. The measurement shows that the value of the parameter λ
is equal to 0.475 . This result confirms the introductory assumption about the fluid forces
acting on the rotor. The stability margin corresponds to the mechanical resonances of the
rigid rotor mass supported by the oil spring. It can be noted that the frequency ωcrit is not
equal to the rotor critical speed when the vibration is excited by the rotor unbalance.

If the system were linear, then the unstable rotor vibration would spiral out to infinity
when the rotor angular frequency crosses the so-called Bently-Muszynska threshold

Ωcrit =

√
K

M
λ

. (15)

The Bently-Muszinska threshold is inversely proportional to the ratio λ. The anti-swirl
technique is focused at decreasing λ.

As it is experimentally verified, the frequency spectrum of the fluid induced oscillation
contains the single dominating component as it would be a solution of the second order linear
differential equation without damping. The proportionality between ω and Ω is maintained
for a wide range of Ω, which is greater than the threshold Ωcrit. This fact is confirmed by the
full multispectrum in figure 11. The dominating peak in all the spectra forms a straight line
in the waterfall plot. Therefore the multispectrum can be considered as an experimental
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verification of the fact that the value of λ is constant and independent on the rotor rota-
tional speed.

The journal lateral oscillations are limited by the journal bearing surface. Stiffness and
damping coefficients are non-linear functions of the eccentricity ratio, especially when the
journal is approaching to the bearing wall. If the magnitude of vibration is increasing
then the fluid-film stiffness and damping is increasing as well and the relationship (14) is
maintained adapting stiffness to the value of M ω2. A new balance forms a limit cycle of
the journal orbital motion.

A fluid-induced instability, commonly referred to as oil whirl, is the special resonance
vibration with the frequency that is proportional to the journal rotational speed. The rotor
precession is self-excited by fluid induced instability and it is called whirl vibration. The
whirl vibration is always forward precession and starts at the rotor rotational frequency
given by (15). The orbit shape is nearly circular for whirl vibration [7].

Fig.15: Nyquist diagram showing stable, margin and unstable locus

5. Magnitude of the whirl vibrations

The magnitude of the whirl vibration at the frequency λΩ (0.475 ord), including the
second harmonic (0.95 ord) of this frequency, and the magnitude of the vibration at the rotor
rotational frequency Ω (1 ord) as a function of time are shown in figure 15. The frequencies
of the tracked components are designated by order, which is a fraction or multiple of the
rotor rotational frequency. The magnitudes as harmonic vibration envelopes were evaluated
using the Vold-Kalman order tracking filtration [11]. As it follows from the formula (9), the
magnitude of the synchronous component is proportional to the inverse term, which depends
on the value of the oil-film stiffness. The diagram in figure 15 shows that the magnitude
is decreasing while the self-excited vibration starts as a result of the stiffness increase. The
same effect can be seen, when the self-excited vibration stops. This phenomenon confirms the
hypothesis stated for explanation why the steady-state vibration is maintained for Ω > Ωcrit.

The magnitude of the 0.475 ord component is ten times greater at least than the mag-
nitude of its second harmonic (0.95 ord). The presence of the harmonics is a correctness
measure for assumption dealing with linearity of the rotor system.

The magnitude of the vibration at the journal vibration frequency (λΩ) as a function of
the rotor rotational frequency (Ω) is shown in figure 16. The segment AB of the diagram
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corresponds to the RPM interval where the whirl vibration occurs and the oil film stiffness is
adapted to save equality of the quantities M ω2 and K while ω = λΩ. The magnitude of the
whirl steady-state vibration depends slightly on the rotor RPM. The formula (8) theoretically
gives the infinity magnitude for these conditions. As it is evident the thresholds for starting
and stopping the fluid-induced vibration are different, which is a consequence of the rotor
system non- linearity. Stiffness and damping of the oil-film for real rotor systems are not
only a function of the vibration magnitude but a function of Ω as well. Except for some
experimental result the analytical solution is beyond the topic of this paper.

Fig.16: Envelope of the vibration at the
frequency λΩ versus shaft RPM

Fig.17: Envelope of the vibration at the
frequency Ω versus shaft RPM

The magnitude of the vibration at the rotor rotational frequency (Ω) as a function of
this frequency (Ω) is shown in figure 17. This diagram indicates that there are two states
of the rotor system. The state of the damped vibration is described by the linear motion
equation (6) with constant parameters while the fluid-induced vibration can be described by
the same equation but some of the parameters, namely stiffness and damping, are a function
of the vibration magnitude.

During the rotor run up and coast down the magnitude of the synchronous spectrum
component is free of extreme resonances what confirms that the maximum value of the
rotation speed is less than the first critical speed. Some experiments [7] show that the self-
excited vibration at the frequency λΩ stops when passing the first rotor critical speed. If
the rotational speed of the Rotor Kit exceeds thousands of RPM the whip vibration appears.
The frequency of the whip oscillation is equal to a constant value.

6. Conclusion

The paper describes a powerful analytical tool for rotor system diagnostics. The new
term is a full spectrum. The full spectrum is a good tool for stability investigation of rotors
supported by fluid film bearings. An advantage of the full spectrum is that this two- side
spectrum describes motion in the plane while the one-side spectrum describes motion along
a straight line. The two-side spectrum allows evaluating the orbit envelope. The first part
of the paper demonstrates whirl vibration and the independence of the ratio relating the
precession speed to the rotor rotational speed on the rotor absolute rotational speed.



80 T̊uma J. et al.: Fluid Induced Instability of Rotor Systems with Journal Bearings

The lumped parameter model of the journal centre motion in the journal bearing gives
explanation of the stability margin and the onset of the self-excited vibration. The analysis
of the journal behavior is based on using the Nyquist stability criterion for linear dynamic
systems. The Vold-Kalman filter, employed to track the harmonics of the rotor rotational
frequency, gives the new and interesting information about the rotor system properties. As
it is evident the journal motion in bearing is governed by two equations of motion, the first
one for a small amplitude of vibration (linear model) and the second one for the fluid-induced
vibration (non- linear model).
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