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MODELLING AND EVALUATION OF THE INFLUENCE
OF END-STOPS IMPACTS ON RESPONSE SIGNAL

IN A VIBRATION ISOLATING SYSTEM

Radúz Zahoranský, Juraj Stein*

The end-stops in vibration isolation systems function as a structural constraint of the
operational range. If engaged, the force response to the deformation exhibits a pro-
gressive growth. Mathematical approximation of end-stops characteristic is usually
realized by a non-linear function of the exerted displacement. The engagement of
end-stops changes system dynamic properties. Presence of general damping reduces
the negative effect of end-stops. Several approaches to end-stops modelling and to
approximate solution of resulting system equation are introduced, assuming certain
region of linear restoring force. In real situation, the end-stops are not fully able to
prevent hard impacts onto the solid operational constraints. The modelling of this
phenomenon using the so-called penalty approach is described in the next section
of the paper. Simulation analysis provides some insight into influence of linear vis-
cous and non-linear friction damping. In the final part above described methods are
compared while subjected to same excitation signal. In the conclusion some hints to
practical application of results are indicated.

Key words : vibration isolation, non-linear system, end-stops, operational limits, vis-
cous damping, dry-friction damping

1. Introduction

A vibration-isolation system (VIS) of a modern suspended driver’s seat contains compo-
nents that restrict the range of possible motion to certain limits. The limiting components
usually are rubber blocks with progressive force response on their deformation. Moreover,
structural limits constrain the maximal available range of motion (stroke).

For modelling purposes, the influence of end-stops has to be analysed. Measurement,
identification and analysis of such a structural element should be conditioned by the extent
of its impact on overall system performance. If the relative displacement during standard
excitation levels reaches into the end-stops region these must be included in the system
model. Thorough analysis of their interaction with other system structural elements must
be undertaken. The progressive increase of the spring force induces a functional dependence
of the system resonance frequency on the amplitude of actual displacement as illustrated
in [8]. Further on the influence of the hard structural limits should be assessed too. All this
is subject of the following contribution.
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2. Identification of end-stops parameters

2.1. System description

The general structure of a horizontal VIS of a modern driver’s seat usually consists of
a linear spring with spring constant kL, viscous damper with assumed linear damping con-
stant b, dry-friction component, described conventionally by the friction coefficient μk, and
the end-stops – Figure 1. All these components are supposed to have symmetrical charac-
teristics. The system is subjected to base excitation in the x-direction by displacement u(t).
The relative displacement xr of such a system has essentially three regions (Figure 1) :

i. a region (−xL,+xL) in which the attached spring can be assumed to be linear,
ii. (−xop,−xL) and (+xL, +xop) regions, in which the rubber end stops with progressive

force/deflection characteristics come into action in addition to the spring influence,
iii. a region in excess of the operational range (−xop,+xop) where the operational limits

are hardly hit.

Note the fact, that due to the construction of the frame itself both the end-stops and
structural limits had to be assumed and modelled independently.

Fig.1: Illustration of the horizontal VIS model
with the end-stops (description see text)

Quasi-static measurement of the response force over the exerted displacement up to ope-
rational limit is used in practice to conventionally describe the VIS properties. This mea-
surement provides a characteristic hysteretic curve. Examples of experimentally measured
hysteretic curves, supplied by a VIBSEAT project partner, are presented in Figure 2. Each
of these two plots corresponds to a different arrangement of vibration-isolation mechanism
without a hydraulic damper. Hence the extent of hysteresis represents energy dissipation,
which can be considered to be predominantly due to the friction damping. The presence
of similar system stiffness linear ranges (−xL,+xL) is clearly seen in both courses. Also
the influence of end stops and their non-linear force-deflection characteristics is clearly seen.
The static component of the friction force was identified from a span in the dwell point.
The difference in the measured courses appears in the progressivity of the non-linear region
as well as in the area that is proportional to the dissipated energy. Course 2 appertains to
a suspension system, which is stiffer and has a less damped response, as the friction damping
is significantly reduced in comparison to the system represented by the course 1.

2.2. Modelling of the end-stops characteristic

The main task of the identification of the end-stops is estimation of the unknown pa-
rameters of a selected regression model. The modelled mathematical approximation should
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Fig.2: Measured hysteretic curves for two different horizontal VIS of a driver’s seat

respect all the physical relations that can be assumed from measured data. On the other
hand selected model should be easily applicable, i.e. it should be simple and physically trans-
parent. Frequently used polynomial model should have a minimal number of terms. In [7]
and [8] for a similar system quadratic function of the end-stop deformation is assumed to be
an optimal mathematical model obtained by the least squares method (LSM). Due to toler-
ances estimated from the measurements of the static force proper and more detailed analysis
of the optimal functional dependence became a topical task. Five independent models were
assumed [9]:
– exponential model with unknown constant A1 and exponent β – Eq. (1);
– asymptotical exponential model with unknown constant A2 and exponent β – Eq. (3);
– a general α-power model, unknowns: constant A3 and power α – Eq. (4);
– quadratic model with a single unknown constant kNLq and with power α = 2 – Eq. (6);
– cubic model with a single unknown constant kNLc and with power α = 3 – Eq. (7).

Formula, defining Fs,NL as an exponential function of the end-stop displacement Δ is :

Fs,NL = A1 λ1 eβΔ , (1)

where
λ1 = sign(xr) for |xr| ≥ xL , λ1 = 0 for |xr| < xL .

The variable Δ denotes the absolute deformation of the end-stops, i.e. displacement in the
non-linear region (|xr| > xL), defined as Δ = |xr| − xL. The dimension of the non-linear
stiffness coefficient A1 is [N].

For the purpose of the LSM application, the absolute value of Eq. (1) can be transformed
into its logarithmic form :

ln(Fs,NL) = a1 + βΔ , (2)

where a1 = lnA1.

Asymptotical exponential law is expressed in similar way as Eq. (1) :

Fs,NL = A2 λ1 (eβΔ − 1) , (3)

while the dimension of the stiffness coefficient A2 is again [N]. However, as the linearization
by using logarithm is not possible, its application in the LSM identification procedure is
rather difficult. For this reason it is not considered in the further analysis.
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General formula of the non-linear restoring spring force Fs,NL in the α-power form is :

Fs,NL = A3 λ1 Δα , (4)

while the unit of A3 is [Nm−α].

Logarithm of the absolute value of Eq. (4) for |xr| ≥ xL leads to a linear course in the
logarithmic scale [2] :

ln(Fs,NL) = a3 + α ln Δ , (5)

where a3 = lnA3.

As shown further, the choice of value α = 2 turned out to be useful for following ana-
lysis, as the quadratic dependence of the restoring force fitted the experimental curve with
sufficient precision. The non-linear end-stop spring force is then for |xr| > xL expressed as :

Fs,NL = kNLq λ1 (|xr| − xL)2 , (6)

while the unit of kNLq is [Nm−2].

Also the cubic expression (α = 3) according to Eq. (4) was tested, for which the
term kNLc is :

Fs,NL = kNLc λ1 (|xr| − xL)2 , (7)

while the unit of kNLc is [Nm−3].

Other approximations could be used, however, as shown further, the substitutions using
the power laws of Eqs. (6), (7) furnished a sufficiently accurate non-linearity approximation,
so there seemed no need to further explore other approximations.

2.3. Modelling of the operational limits by the penalty approach

As was seen in the experimental signals from laboratory measurements, supplied by
VIBSEAT project partner, the relative displacement of motion of the described vibration-
isolation system might even reach the operational limits of the system, so that |xr| ≥ xop.
The stiff operational limits represent a structural constraint for the oscillatory motion. The
conclusion is such that for the certain conditions, i.e. either high level of excitation, excita-
tion of resonant oscillations or a weak damping of the system, even the elastic end-stops are
not sufficient in absorbing and converting all the kinetic energy of the moving mass. Conse-
quently a hard hitting on the solid stops appears, resulting in extreme peaks in the response
acceleration signal. Modelling of such a phenomenon is associated with incorporation of an
additional high stiffness elastic element. In practice it can be strongly disadvantageous to
extend the actual model by an additional degree of freedom, as the identification of param-
eters from available data would be too complicated or even impossible. A penalty function
or barrier function are simple mathematical procedures used in the optimisation theory to
describe this situation [6]. They can be easily adapted to be applied as a realization of the
stiff operational limits in the so-called penalty approach. This method is broadly analysed
in [3]. It is found to be reliable, simple, and beneficial for the purpose of mathematical
modelling. The barrier force would be applied as the relative displacement xr approaches
the operational range xop from within a given small interval (xop − ε, xop) [6]. The penalisa-
tion using the penalty force P represents a virtual sharply rising restoring force component
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in total restoring force Fs,PF (physical dimension [N]) – see left part of expression Eq. (8),
which mathematically sanctions the exceeding of the allowed operational range xop.

For this concrete system a simple realization of the penalty force is an additional force
term added to the original restoring force Fs for |xr| > xop – the right part of the expression
Eq. (8) :

Fs,PF = Fs + P (xr + xop) = Fs + λ2 w
|xr| − xop

xop
Fs , (8)

where w is a weighting factor (of value of 30÷ 100) and λ2 is defined as :

λ2 = sign(xr) for |xr| ≥ xop , λ2 = 0 for |xr| < xL .

The spring force Fs is equal in general to the sum of linear and non-linear (due to the
end-stops influence) components :

Fs = Fs,L + Fs,NL . (9)

In this case the operational range is approximately twice the linear range, hence
xop = 25mm is assumed. The applied penalty weighting factor w = 50 was identified from
the comparison of the time domain response signal measured during laboratory testing and
numerical simulations. The value is approximate only and its variation by ±20% does not
significantly change system behaviour.

The equation of motion of a damped system with both progressive end-stops (kNL) and
stiff operational limits (Fs,PF) for the case of |xr| > xop is then :

mẍ+ b ẋr + kL xr + Fs,NL + Fs,PF + Ff = 0 , (10)

where the friction damping force Ff has the form of :

Ff = Ffk sign(ẋr) = μk FN sign(ẋr) (11)

and the relative displacement xr :
xr = x− u , (12)

where x = x(t) is the mass m horizontal absolute displacement, ẍ its horizontal acceleration
and u = u(t) is horizontal displacement excitation.

The above-described formulation of an additional force to the equation of motion rapidly
increases affinity of the numerical solution to instability. Therefore, in case of simulation,
the time integration step-size Δt has to be estimated carefully for the relative displacement
region where the penalisation is applied.

2.4. End-stops parameter identification by the least squares method

Following the structural assumptions, the oscillatory system exhibits a range of displace-
ments (−xL,+xL) within which a linear behaviour can be stipulated. The measured spring
characteristic involves both the linear and non-linear components. For estimation of chosen
parameter by regression analysis, both regions have to be treated separately, noting that
the non-linear force response is a superposition of the response of the linear spring and the
response of the end-stops.
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Measurement according to Fig. 2 : course 1 course 2

Linear range xL [mm] 10 10

kL [Nm−1] 9114 8512

The exponential model A2 [N] 15.672 20.906

β [1] 351.18 366.05

relative error [%] 19.5 19.5

The α-root model A3 [106 Nm−α] 4.156 7.500

α [1] 1.912 1.966

relative error [%] 9.5 17.4

The cubic model kNL [108 Nm−3] 4.946 8.610

relative error [%] 10.3 6.9

The quadratic model kNL [106 Nm−2] 6.858 11.853

relative error [%] 8.3 15.4

Tab.1: Identified parameters for various models of the two suspension systems

The measured system stiffness linear range was xL = 10mm. As seen in Figure 2a, the
course of the mean response force does not intersect the point of origin, O = [0, 0]. This
might be caused either by measurement error or by assembly imperfection within mounting
tolerances. For the purpose of least squares identification, this gap has to be removed by
shifting the plot to the origin. The obtained results for all assumed regression models are
listed in Table 1.

From Table 1 it is clearly seen that for the course 1 the quadratic approximation furnishes
the best fit (the lowest relative error), while the course 2 is best approximated by the
cubic course. The other two models furnish higher relative errors, hence the approximation
is worst.

3. Apparent natural frequency of the system with end-stops

The end-stops implemented in the structure exhibit progressively growing force response
and so they strongly influence the dynamical behaviour of the entire system. For example,
the frequency of free-oscillation response on the initial relative displacement x0 – system
initial perturbation (keeping other initial conditions at zero) then depends on the interference
of x0 with the end-stops region [4]. For the initial displacement |x0| > xL, such frequency is
always higher than for the case of within the linear range |x0| < xL and increases with the
further increase of |x0|. Analytical investigation of the oscillatory system by the method of
equivalent linearisation provides some insight into end-stops influence on the system natural
frequency and sets a condition for estimation of system undesired behaviour under general
form of input excitation.

The shift of the resonant frequency due to hits on structural limits was not analytically
derived. The structural limits represent a hard restriction of the amplitude of relative
displacement. The introduced substitutive mathematical description by the penalty force
approach is only an idealisation of the nature of their influence. Moreover such an operational
regime, during which the structural limits are under permanent impacting, is potentially
detrimental both to the system and to the seated driver and should be avoided by all means.
Under these assumptions, further analytical expansion of influence of their presence is not
necessary at this stage.
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Expressing the equivalent linear stiffness coefficient keq using the equivalence of potential
energy was chosen as a proper method because of analogy with derivation of the equivalent
damping coefficient in the system with friction damping. The estimation of the equivalent
stiffness keq and thus the apparent natural frequency ω0A using the equivalency of the
potential energy is less accurate than the commonly used harmonic linearisation method.
However, especially in the case of restoring force given by a set of conditions different for
|x0| < xL and |x0| > xL the method of equivalent potential energy is more straightforward
and simpler to derive. For the purpose of further analysis it was considered to be sufficiently
accurate, giving the lower bound estimation of ω0A. As shown further, so obtained simulation
results are in good agreement with experimental results.

Assuming that the total potential energy Estot = EsL + EsNL is stored in both linear
spring and in the progressive end-stops results for the relative displacement amplitude δ [8]
into :

Estot = EsL + EsNL =
1
2
kL δ

2 + EsNL , (13)

For the general α-root definition of the non-linear force Fs,NL the potential energy stored in
the deformed end-stop unit is equal to :

EsNL =
1

α+ 1
kNL |δ − xL|α+1 . (14)

Equivalent stiffness is then determined using the equivalent mechanical energy linearisa-
tion over the range xr = 〈0, δ〉.

δ∫
0

keq xr dxr = EsL + EsNL . (15)

Substituting formulas (13) and (14) for the linear and non-linear component of the potential
energy into Eq. (15) for δ > xL follows :

1
2
keq δ

2 =
1
2
kL δ

2 +
1

α+ 1
kNL |δ − xL|α+1 . (16)

Hence, for δ ≤ xL,
keq = kL (17)

and for δ > xL,

keq = kL + 2
1

δ2 (α+ 1)
kNL |δ − xL|α+1 , (18)

from which for the quadratic course of the end-stop force, described by Eq. (6), following
formula results :

keq = kL +
2
3
kNL

(δ − xL)3

δ2
. (19)

Introduction of an auxiliary relative variable rx ≥ 1 defined by Eq. (20) :

rx =

⎧⎪⎨⎪⎩
δ

xL
for |δ| > xL ,

1 for |δ| ≤ xL

(20)
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enables to simplify the formula of Eq. (19), assuming positive xL only :

keq = kL +
2
3
kNL xL

(rx − 1)3

r2x
. (21)

This is the describing equation of the equivalent stiffness coefficient keq, where keq is a func-
tion of the ratio rx between magnitude of the relative displacement amplitude δ to the
range xL of linear stiffness. Note that for δ ≤ xL, keq = kL so for the whole operational
range, the equivalent stiffness keq ≥ kL.

The estimation of the apparent natural angular frequency ω0A for the situation when
the end-stops are engaged is derived using the standard formula ω0A =

√
keq/m, into which

for keq is substituted from Eq. (21) :

ω0A =

√√√√√kL +
2
3
kNL xL

(rs − 1)3

r2x
m

(22)

Apparent natural frequency ω0A is a function of the ratio rx, and is always larger then
undamped natural frequency ω0 =

√
kL/m for the linear range, because keq ≥ kL.

Further assuming excitation by harmonic base displacement with angular frequency ωe

equation of the skeleton curve is obtained by substituting rx from Eq. (20) for δ > xL and
expressing it from Eq. (22). For the quadratic function of the spring force the resulting
formula is a cubic algebraic equation having three roots, two of them complex. Multiplying
real root by xL leads back to the relative displacement amplitude δ. The plot of so calculated
δ over the frequency range that covers linear system natural frequency Ω = ωe/ω0 creates
a skeleton curve – the boarder-line between the under and above resonance regions (Figure 3).

Fig.3: Illustration of the course of apparent natural frequency
due to the end-stops influence (Ω = ωe/ω0)

The curves plotted in Figure 4 correspond to the amplitude-frequency characteristic
of a described system under base kinematical harmonic excitation by effective acceleration
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Fig.4: Course of the relative displacement amplitude δ in the frequency domain

value aeff = 0.88m s−2. Comparing the plotted courses a good match between the simulation
and the experiment curves is seen.

4. Influence of initial displacement on the steady state response

The influence of the initial conditions (IC) on the output acceleration response of the
non-linear system to the harmonic excitation is analysed next [5]. The initial relative dis-
placement x0 was chosen as the only non-zero initial condition (setting other to zero), as
it can be easily visualised. It represents the initial potential energy present in the system
at the beginning of the motion, which can influence the whole following trajectory. In the
analysed system, certain level of the initial energy causes massive increase of the incidence
of end-stops impacts. This can be shown in the plots of power spectral densities (PSD)
as a presence of the region that significantly differs in shape and volume from that one, in
which non-stationary action is either not dominant or not present at all.

The end-stops also shift system natural angular frequency from that one defined by the
linear stiffness ω0 to the apparent one ω0A (given e.g. for the quadratic stiffness of the
end-stops by the Eq. (22)).

4.1. Simulation of a system with zero damping

Simulations were performed using a harmonic signal u(t) with the effective value of accel-
eration aueff = 0.70m s−2, angular frequency ωe = 1.5ω0 and a superimposed random noise
component of 10% with normal distribution of acceleration. Due to non-linear character of
the system analysis has to be performed by averaging over a large number of realizations.
The system is exposed to the same harmonic excitation, however each realisation might
either start from randomly preset ICs within the linear range or due to the added small
random component to the excitation signal has slightly different statistical properties [5].

The input acceleration signal parameters were chosen in such a way that the resulting
linear steady state response relative displacement amplitude would be less than xL so that
in ideal case no end-stops would by involved. The excitation signal frequency was set to
ωe = 1.5ω0 so the transmissibility of the relative displacement Txr of the linear undamped
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system, defined by Eq. (23), at Ω = ωe/ω0 = 1.5 is Txr = 1.8 .

Txr =
∣∣∣∣ Ω2

1 − Ω2

∣∣∣∣ . (23)

The effective value aueff of excitation acceleration was calculated implicitly for each re-
alization from the given ratio δ/xL by the formula :

aueff =
1√
2

δ

Txr
ω2

e . (24)

The resulting amplitude δ of steady state oscillation for applied value of aueff was well
under xL (δ = 0.61 xL). So if the unperturbed system reaches the steady state within the
linear range resulting oscillations are assumed not been influenced by the end-stops. Con-
trary, if either the initial perturbation by x0 or the displacement peak amplitude during
the transient are sufficient to cause the end stops to be hit, system might retune and might
start to oscillate near the apparent resonance frequency ω0A = ωe. The amplitude of oscil-
lations which corresponds to response of the system in the state of apparent resonance of
ω0A = 1.5ω0 would be equal to δ ≈ 1.7 xL, as can be derived from Eq. (22) and seen on
Figure 3.

Results are illustrated in Figure 5. The acceleration transmissibility of the undamped
linear system would be Ta = 0.8, while due to the non-linearities in the PSD plot appear
peaks at ωe higher harmonics. Therefore, for the stabilized steady state system oscillation,
are within the linear range (−xL,+xL) of relative displacement xr. Ability of the system to
extinct the transient state due to the IC perturbation is influenced by damping. Sufficiently
perturbed IC might tend to retune the system, i.e. the amplitude of relative displacement
that corresponds to the given ω0A = ωe behaves as an attractor.

Fig.5: PSD of the acceleration signal as a response to harmonic
kinematical excitation at angular frequency 1.5ω0 and for
initial displacement x0, damping μ̄k = 0; ξ = 0

Starting from the zero IC the relative displacement amplitude is expected to remain
within the linear range. For a small or even zero damping once the end stops are involved
into the course of oscillation an increased effective value (RMS) of the output acceleration will
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result. Moreover, system might retune to the close neighbourhood of the point of apparent
resonance frequency ω0A. When the oscillations start, due to ICs, from the non-linear
stiffness region and no sufficient damping is present the system permanently oscillates in this
neighbourhood. The effective value of the output signal significantly increases comparing to
the case when IC ∈ 〈−xL,+xL〉.

The influence of general damping (i.e. friction, hysteretic, viscous, etc.) to the reduction
of non-stationary motion is simply analysed by plotting the course of coefficient of concur-
rence κ, Eq. (25), versus the damping ratio ξ or the relative kinetic friction coefficient μ̄k.
The coefficient of concurrence κ is the ratio of acceleration RMS values obtained by ave-
raging all m realizations with the initial condition in non-linear range to the RMS value
of all n realizations with initial conditions within the linear range (|x0| < xL), both ob-
tained by the same averaging procedure, denoted by the acceleration RMS values averaging
operator E{ax} defined for the normal distribution function :

κ =
E{RMS(ax,NL)m}
E{RMS(ax,NL)n} . (25)

According to the Parseval’s theorem [5], this quantification can be applied also on the course
of the power spectral densities of the acceleration signal as a response on the identical
excitation, however with varying initial displacement x0 (within the operational range xop).
Then the influence of the additional damping on the mitigation of the IC influence can be
illustrated by series of surface plots (see Figure 6) with varying damping ratio ξ or relative
kinetic friction coefficient μ̄k.

i. For linear viscous damping the damping ratio ξ is given in the standard way :

ξ =
b

2
√
kLm

. (26)

ii. The dry-friction damping is described by a relative dimension-less kinetic friction
coefficient μ̄k. For the assumed amplitude of excitation F0 =

√
2maeff and for the

friction force Ffk expressed using the friction coefficient μk and the normal force
FN = mg (where g is the gravity acceleration) [1], so that Ffk = μkmg, the relative
kinetic friction coefficient μ̄k is defined in the following way :

μ̄k =
4
π

Ffk

F0
=

4
π

μk g√
2 aueff

. (27)

4.2. Influence of single type of damping

The analysis was performed according to Eq. (25). Either the minimal viscous damping
ratio ξ or a minimal normalized friction coefficient μ̄k were sought such as to extinct the
non-stationary motion. For each level of harmonic excitation, the sets of output signals were
obtained from the system initially perturbed within linear range and latter from within the
non-linear range. Accelerations signals from these two groups of IC were compared. System
was assumed to behave quasi-chaotically (i.e. the operation with irregular end-stops hits),
if the coefficient of concurrence κ was below the threshold value 1.1 and the steady state
relative displacement stays within the linear range (−xL,+xL) at least for the initial dis-
placement x0 = 0. This secondary condition (δ < xL for x0 = 0) is due to the fact that
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Fig.6: PSD of the acceleration signal as a response to the harmonic kinematical
excitation of the frequency of 1.5ω0 and initial displacement x0

the concurrence coefficient κ → 1 also in the case if the end-stop hit-to-hot oscillations are
induced regardless of the value of initial displacement x0 (see Figure 5). The chosen value
of κ ≤ 1.1 represents only an approximate threshold for numerical calculations. Following
observation, the coefficient κ either hovers around 1.0 (if the system behaviour is not influ-
enced by varying IC) or κ� 1 for the damped system strongly influenced by the non-linear
end-stops. The value of κ ≈ 1 indicates that the transients due to the non-zero IC extinct
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and the steady state system oscillations remain within the linear range. If κ > 1.1, system
behaviour differs for |x0| > xL and for |x0| < xL.

In Figure 6 in the left column the limit situation for variable μ̄k and zero ξ is depicted,
representing a system with dry-friction only, whereas in the right column the situation with
variable ξ and zero μ̄k is depicted, corresponding to viscous damping only. In these figures
a sharp boundary between the non-stationary oscillations with high value of the acceleration
PSD and the standard movement with lower acceleration PSD is sought.

From these graphs it can be concluded, that for the dry-friction damping a value of
μ̄k = 0.40 suffices to fully damp the non-stationary oscillations, whereas for viscous damp-
ing the value ξ = 0.20 is sufficient. Note also the course of acceleration PSD (last row)
– the oscillatory system with sufficient viscous damping exhibits the well-known course with
large peak at the excitation frequency ωe = 1.5ω0, whereas the oscillatory system with
the sufficient dry-friction damping exhibits a number of odd harmonics of the excitation
frequency ωe.

4.3. Influence of combined damping

Obviously the courses illustrated in Figure 6 are limit cases. A case of the behaviour of
the oscillatory system with the combined viscous and dry-friction damping is analysed next.

The combined damping is represented by a combination of values ξ and μ̄k. The selected
levels of excitation were given as a preset ratio of the steady state displacement amplitude δ
to linear range limit xL : [0.5, 0.7, 0.9, 1.0, 1.1]. Analysis was performed according to Eq. (25).
Excitation signal frequency was set to ωe = 1.5ω0; the RMS value of excitation acceleration
was calculated implicitly for each realization from the given δ/xL by the formula Eq. (24).

Fig.7: Minimal values of damping ratio ξ and friction coefficient μ̄k, 1 – δ/xL = 0.5,
2 – δ/xL = 0.7, 3 – δ/xL = 0.9, 4 – δ/xL = 1.0, 5 – δ/xL = 1.1

In Figure 7 the relations between μ̄k and ξ are plotted for each of the five above-mentioned
excitations. It can be seen that the dependence is a straight line. The viscous damping is
more effective than the dry-friction – the necessary characteristic variable ξ limit value
is approximately a half of the corresponding characteristic value μ̄k for the dry-friction.
Moreover, from this graph a value of the other characteristic variable can be estimated, if
one of the characteristic variables (ξ or μ̄k) is known beforehand and some level of relative
displacement excitation can be assumed.
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5. Conclusions

The search of the optimal model of the end-stops restoring force provided some models
of the end-stops. In addition to the quadratic model treated in [8] further models were
introduced, wherefrom the quadratic and cubic models proved as those approximating the
measured courses best. These models are used in subsequent analysis of end-stops influence
on the VIS performance. The engagement of the end-stop in the VIS induces a state of
apparent resonance and partially influences the stability of such a system.

Viscous damping proved to be an effective tool to eliminate this inconvenient behaviour,
as a damping ratio of approx. ξ ∼= 0.10−0.20 provides sufficient stabilisation of the motion
for the applied excitation acceleration signal. In contrast, the friction damping, due to its
nature, does not exhibit this property and much higher relative kinetic friction coefficient
values are needed to obtain the same effect. Surface plots in Figure 6 illustrate the sole
influence of these values on oscillatory system behaviour. The graph in Figure 7 can be used
to assess their mutual influence if a combined type of damping is assumed.
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