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USAGE OF THE GENERALIZED MODAL SYNTHESIS
METHOD IN DYNAMICS OF MACHINES

Vladimir Zeman, Michal Hajzman*

Classical approach to complex dynamical systems modelling using modal synthesis
method is based on the generalized coordinates transformation to the new configura-
tion space by means of chosen master eigenmodes of vibration. The paper introduces
generalization of the modal synthesis method with quasistatic consideration of slave
eigenmodes of vibration. This improvement brings better approximation of the sys-
tem behaviour while the number of degrees of freedom of the reduced model is the
same as in the case of classical approach. The results of modal and acoustic analysis
of the test-gearbox, made a gain on a classical and new reduced model, are compared.
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1. Introduction

Many real mechanical systems are composed from flexible bodies mutually joined by
discrete couplings. The mathematical model of these systems after discretization of each
body by the finite element method has a large number of degrees of freedom (DOF number).
That is why the standard numerical methods of dynamic analysis, tuning and optimization
of these complex systems are very hardly applicable. The best-known reduction DOF num-
ber methods based on the transformation of the coordinates by modal or other reduction
matrices of the whole system [2], whose complex model is not in entrance known, cannot
be applied. A suitable method for the modelling of dynamic behaviour of large multi-body
systems is a modal synthesis method [9], [14]. The modal approach has a long tradition in
structure engineering [1] and at the workplace of authors it was used e.g. for a vibration
analysis of the screw compressors [8] and car gearbox [10],[13], a sensitivity analysis and
spectral tuning of a centrifugal fan [12], a modelling and seismic analysis of a primary circuit
of NPP with the VVER reactor type [5], [6] and for other complex systems.

A modal synthesis method is used for modelling of dynamical systems that can be decom-
posed into subsystems joined by various discrete couplings. Classical approach, applied in
the above-cited publications, is based on the generalized coordinates transformation to the
new configuration space by means of chosen master eigenmodes of vibration that originate
from modal analysis of mutually uncoupled, undamped and nonrotating subsystems. This
paper introduces generalization of the modal synthesis method with quasistatic considera-
tion of slave eigenmodes of vibration. This improvement brings better approximation of the
system behaviour while the DOF number of the reduced model is the same as in the case of
a classical approach. Also the reduced model can have less degrees of freedom considering
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a certain number of slave eigenmodes of vibration and can be used in computations with
long computational time where the time depends on the level of model reduction (e.g. for
numerical simulations or optimizations). The level of improvement is verified by numerical
experiments with simple test-gearbox. The results of modal and acoustic analysis of the
test-gearbox are compared for modelling by the classical and new approaches.

2. Modelling

Rotating mechanical systems can be decomposed into stator and rotor (shafts with gears)
subsystems j joined by gear and bearing couplings. Model of the decomposed system is of
the form [11]

M, &;(t)+ (Bj +w; Gy a;(t) + K aq;(t) =£7 () +£7, j=1,2,...,9, (1)

where M;, B; and K; are symmetrical mass, damping and stiffness matrices, G; is an
antisymmetrical gyroscopic matrix and w; is an angular shaft velocity of the mutually un-
coupled subsystem j. All matrices are square matrices of the n;-th order. Vector f]E (t) is
a force vector of external dynamical loads. Generalized coordinates in vectors q; express
dynamical displacements from a static equilibrium position. The linearized global coupling
force vector in the configuration space

a=lqj]=[al af ... a}]" (2)
can be written as
fc = [fgc] = —(Bg +Bp)q(t) — (Ke +Kg)q(t) +fi(t) , (3)

where K¢ and Kp are stiffness matrices of linearized gear and bearing couplings and fi(¢)
is the vector of internal excitation in the couplings. Damping coupling matrices Bg and Bp
are of the same structure as corresponding stiffness matrices. After the modal analyses of
the uncoupled, undamped and nonrotating subsystems we choose for each subsystem j a set
of m; master eigenmodes of vibration, which will be ordered in matrix ™V; € R"™™ and
a set of s; slave eigenmodes of vibration, which will be ordered in matrix *V; € R""% as is
schematically shown in the left part of Figure 1. A set of other eigenmodes of vibration will
be neglected. Diagonal square spectral matrices ™A; € R™7°™7 and *A; € R*% composed
of eigenfrequencies squares on their diagonals correspond with the sets of master and slaves
modes of vibration. We suppose, that conditions of orthonormality [7]

"VIM; MV, =E, "V K;"V;="A
ViM;*V; =0, °V/K;*V,;=0,

& (4)

are satisfied.

Fig.1: Structure of matrices A;, V;, H
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We introduce the transformation of the subsystems generalized coordinates vectors
qj:mijXj+SVjSXj, j:1,2,...,S, (5)
and express it in the model (1)

M; ("V; 7% + V%) + (B + w; Gy) (MV; "%, +°V; °%;) +

6
+K; (mijXj + stsz) = fJE(f) + ij . ( )

After premultiplying of this equation by matrix mV]T with consideration of the orthonor-
mality conditions (4) we have
X (t) + mVjT (Bj + w; Gj) V% + mVjT (Bj + w; Gj) *V; %% +
=0 (7)
+ A My ="V (EE() +£F)

where contribution of the slave mode shapes of vibration to damping and gyroscopic forces
was neglected and therefore term ™V (B; 4 w; G;) *V; °X; is equal to zero. If we premul-
tiply equation (6) by matrix SVJT, it holds

SVIK; ("V;™x; +5V; %) =5V (£8(t) + £f) (8)
for the quasistatic solution. Then we get the relation
x = A VT (ER() +£F) Q
which can be substituted to (5) and we have expression
q; ="V, "% + 5V ATV (87 () +£7) i =1,2,...,8, (10)

for the transformation of the original subsystems generalized coordinates vector to the space
of master modal coordinates of uncoupled, undamped and nonrotating subsystems. Equa-
tion (7) and transformation (10) can be rewritten in the global forms

3% (t) + (D 4 wo G) ™x(t) + "A™x(t) = VT (fg(t) + fc) | (11)
qt) ="V "x(t) + H(fe(t) + fo) , (12)

where block diagonal residual compliance matrix (see the right part of Figure 1)
H = diag (*V,;°A;'°V]) e R"" (13)
was introduced. Other block diagonal matrices in global forms are
D = diag(™V] B; ™V;) = diag(2 DY) Q) , G = wio diag(w; ™V G;™V;) ,
MA = diag(™A;) = diag(QY?) , ™V = diag(™V; ),

and wy is a reference angular velocity, e.g. the angular velocity of the first shaft subsystem
(j =1). Then w; is the reference velocity (wp = w1).
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To complete the model, it is necessary to express the vector of coupling forces f. After
substituting the transformation (12) in equation (3), we have

fo = — (Be + Bg) ("V™x%(t) + Hfg(t) + Hfc) —
-0 (14)
— (K¢ + Kg) (™V ™x(t) + Hfg(t) + Hfc) + fi(t) ,

where the contributions of the slave mode shapes of vibration to expression of damping
forces transmitted by couplings are not respected. We rewrite expression (14)

[E+ (Kg+Kg)H]fc = — (Bg + Bg) ™V "x(t) —

(Ko + Kp) ("V ™x(t) + Hfg(t)) + (1) (15)

and introduce matrix

C=E+ (Kg+Kp)HeR"" . (16)

Then it holds for the coupling force vector
fo=-C! [(BG +Bp) "V k(1) + (Kg + Kp) ("V™"x(t) + Hfg(t)) — fI(t)] . (17)

This expression can be substituted in equation (11) and we get the condensed model of
a large rotating system of order m = Y m; created by means of modal synthesis method
with quasistatic consideration of slave eigenmodes of vibration in the form

"%(t)+ [D+wo G+ VT C! (Bg + Bg)™V] "%(t) +
+ ["A+"VTC! (K +Kg) ™V] "x(t) = (18)
="VT'[E-C ' (Kg+Kp)H]fe(t) + "V C ' fi(t) .

In the case, that we don’t consider any contribution of slave eigenmodes of vibration, the
residual compliance matrix H is a null matrix, C~! = E is a unit matrix, and the condensed
model of the system is of the classical form presented e.g. in [11].

3. Dynamical analysis

Different dynamical analyses of the large nonconservative mechanical system can be
performed on the basis of model (18). Usage of the new approach to the calculation of
the system dynamical response with quasistatic consideration of the slave eigenmodes of
vibration can be in some cases more advantageous than the original approach. Consideration
of a certain number of the slave eigenmodes can make better approximation of the system
behaviour, while the DOF number is the same as for the classical approach. Contrary on
the classical approach only based on chosen master mode shapes of vibration it is necessary
to compute C~! and H matrices. Because the order of these square matrices is equal to the
DOF number of the original nonreduced model, there can be some problems with practical
realization for very large mechanical systems mainly from the reason of not enough memory.
But it can be used a specific sparse structure of matrices C a H and the computation can
be realized with less memory requirements [4] by means of the Householder identity.

Eigenfrequencies 2, = 27 f, and eigenmodes ™x,, can be obtained for fg(t) = fi(t) = 0
and undamped couplings and subsystems from the modal analysis of the conservative model

mR(t) 4+ ["A+"VTCTH (Kg + Kg) ™ V] ™x(t) =0 . (19)
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Eigenmodes of vibration can be transformed according to (12) and (17) from the space of
master modal coordinates of the uncoupled, undamped and nonrotating subsystems to the
original configuration space of the generalized coordinates of subsystems by

@ =E-HC ' (K¢+Kp)|"V™,, v=12,...,m. (20)

Another important problem in dynamics of machines is analysis of the steady state
dynamic response to the various types of polyharmonic excitations. The common type of
excitation in the rotating systems with gears is the internal excitation of each gear meshing
by periodic gear kinematic errors. These errors can be approximated by Fourier series with
several harmonic components kw,, where w, is the meshing frequency. Let the meshing
stiffness and coeflicient of viscous damping of gearing z on the gear mesh line be indicate
k. and b,. The vector of the internal excitation can be, in this case, written in the complex
form [11]

K
() =33 (ke Avp+ikwb Acp)ese® et AL = AT AT, (21)
z=1k=1

where A, ;, is the complex amplitude of the k-th harmonic component of the error measured
on gear mesh line of the gear meshing z and the vector c, is determined by geometrical
parameters of gears in a mesh [3]. We assume that the vector of external dynamical loads
fr(t) is zero. Particular solution of the condensed model (18) can be estimated also in the
complex form as

K
PR(E) =)D Mx pelhest (22)
z=1k=1

After substituting one harmonic component of the excitation vector and the supposed solu-
tion in model (18) and after an arrangement we have for chosen z and k

k2w M, g + [D +woG+™VTC (Bg + Be) ™V |ikw, ™x. 1, +
(23)
+ [mA +mvT C ! (Kg + Kq) mv} My, p="VTC e, (ky +ikws b)) Asy .

The expression for calculation of the steady state dynamic response amplitudes in depen-
dence on the reference revolutions n = 30 wo/7 is then

",k (n) = Z . (n) £k (n) (24)
where

Z.y= —k2w§E+isz[D+woG+mVTC’l (Bp +Bg)"V| +

25
m mys;T —~—1 m ( )
+mA + VT e (Kp + Kg) ™V

and
£, ="VIC e, (k. +ikw.b.) ALk . (26)



50 Zeman V. et al.: Usage of the Generalized Modal Synthesis Method in Dynamics of Machines

The transformation of complex amplitudes ™x, ; into the original configuration space of
generalized subsystems coordinates is according to (12), (17) and (21) of the form

Qe ="V .~ HC [ikw. (Ba + Be) ™V "X +
(27)
+ (KG + KB) my mxz,k —C, (k‘z +ikw, bz) Az,k

4. Numerical experiments

The presented methodology was verified using the simple test-gearbox (Figure 2). The
gearbox was decomposed into two rotating shafts with helical spur gears (j = 1,2) and into
the housing (j = 3). The shafts were discretized using shaft finite elements [7] and the gears
were modelled using their discrete parameters (mass and moments of inertia). The shaft
subsystem models were created and their modal analyses were performed in MATLAB code.
The housing was modelled as 3D continuum using FEM in ANSYS system. The necessary
housing modal values (eigenfrequencies and chosen eigenvectors) were exported from ANSY'S
to MATLAB. The condensed model of the whole system was assembled in MATLAB code
on the basis of the presented methodology. The MATLAB system was also used for the
computation of eigenvalues and steady state dynamic response. The original nonreduced
models of subsystems had together over 15000 DOF. The shaft system is included by means
of flexible torsional couplings into a drive system. They are supposed constant angular
speeds wy and ws of the driving and driven parts of the system. The static external loading
was defined by initial static torsional preloading Ay; and Ags on both sides of the drive
system (see Figure 2). We assume that the static preloading is sufficient for the constant
gear mesh and that is why the gear coupling can be linearized.

Ba
Twzt — Apa
wit+ Agy l EAH:Z]

Fig.2: Scheme of the test-gearbox

Vs ﬁgls‘/{sﬁl‘

Fig.3: Structure of the residual compliance matrix of the test-gearbox
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The improvement caused by the contribution of a certain number of the slave eigenmodes
of vibration was at first tested for the modal analysis of the conservative model (19). The
referential condensed model (m = 580) was composed of 90 master eigenmodes of each
shaft subsystem (m; = ma2 = 90, 53 = s = 0) and 400 master eigenmodes of the stator
subsystem (mg = 400, s3 = 0). Further modal analyses were performed for additional types
of condensed models characterized by the same number of master mode shapes of the shaft
subsystems (m; = mg = 90, s1 = so = 0), but different number of stator master and slave
mode shapes of vibration. The corresponding residual compliance matrix H is of the form
schematically shown in Figure 3.

The selected numbers of master and slave eigenmodes of the stator were
ms = {50,100, 150,200 } and s3 ={0,50,100} .

Altogether twelve modal analyses of various types of condensed models were performed.
The difference of the obtained eigenfrequencies fﬁN) and eigenfrequencies f,ER) of referential
condensed model was evaluated by the cumulative relative error

50 |f(N) _ (R)|
e(f, f) =Y (28)
v=1 v

The sums were constructed for 50 lower eigenfrequencies. The comparison of the cumulative
relative error of eigenfrequencies for different numbers of chosen master and slave mode
shapes of the stator is shown in Figure 4. It can be noted, that consideration of slave
eigenmodes of vibration brings improvement of modal analysis results.

Fig.4: Comparison of the cumulative relative error for different levels
of reduction and different numbers of slave modes of vibration

A suitable criterion for comparison of the computed eigenvectors qEN)

eigenvectors qg-R) of vibration defined in expression (20) is the normalized cross orthogonality

(NCO) matrix

and referential

MNOT pr (R
q; qu )
N q§N>,q§_R> — ( . i,j=1,2,...,50, (29)
( ) (@™ ™Ma™) (afV Ma)
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i

P

Fig.5: Normalized cross orthogonality (NCO) matrix for the model
composed of 400 master mode shapes and any slave mode
shapes of the stator and for the model composed of 150 master
mode shapes and any slave mode shapes of the stator

e

e

NCO

Fig.6: Normalized cross orthogonality (NCO) matrix for the model
composed of 400 master mode shapes and any slave mode
shapes of the stator and for the model composed of 150 master
mode shapes and 100 slave mode shapes of the stator
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where M € R™" is the mass matrix of the whole system. The normalized cross orthogonality
matrix is a unit matrix in the idealized case, when the compared sets of eigenvectors are
identical. The illustration of NCO matrix calculated for the eigenvectors of the referential
model and of the model composed of 150 stator master mode shapes and any stator slave
mode shapes is in Figure 5. The NCO matrix calculated for the eigenvectors of the referential
model and of the model composed of 150 stator master mode shapes and 100 stator slave
mode shapes is shown in Figure 6. The improvement caused by consideration of slave mode
shapes of vibration is obvious.

The improvement of the steady state dynamic response was studied using overall acoustic
power radiated by the stator surface. Acoustic power was computed for upper effective
estimates of the gearbox housing nodal velocities. The corresponding theory is described
in [3]. Figure 7 shows the comparison of the acoustic power computed for the referential
model and for the models characterized by 200 stator master mode shapes and 100 or zero
stator slave mode shapes.

T T T T T T
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— — 200 master and 100 slave modes /]
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Fig.7: Comparison of the gearbox acoustic power in dependence on
input revolutions for the referential model (m; = mo = 90,
mg = 400, s1 = sg = s3 = 0) and for the models with 200 stator
master mode shapes and 100 or zero stator slave mode shapes

5. Conclusion

The modal synthesis method with quasistatic consideration of slave eigenmodes of vi-
bration usable for modelling dynamical mechanical systems was presented in this paper.
Contrary on the original approach characterized by generalized coordinates transformation
using only master mode shapes of vibration [11], the new approach is moreover based on
the usage of a certain number of slave eigenmodes of vibration. Consideration of the cho-
sen slave eigenmodes can improve approximation of the system behaviour, while the DOF
number is the same as for the original approach. This fact was verified by means of numer-
ical experiments with the simple test-gearbox. The improvement of the modal and acoustic
analysis results by considering the slave mode shapes of vibration is documented.
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