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VIBRATION CONTROL OF PLATE STRUCTURES

Jana Kovarova, Jan Dupal®, Milos Schlegel**

The paper describes two approaches to the problem of active damping of vibrations
of plate structures. First one is based on the full state feedback designed by the pole
placement or LQ (Linear Quadratic) optimization and state observer. The incomplete
pole assignment method is used instead of the standard full assignment. The second
one is based on experimental identification of the first mode shape and design dynamic
compensator. Both methods are confronted in regard of quality and the robustness
of the control law.
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1. Introduction

Vibration control of flexible structures is an important issue in many engineering ap-
plications. Balancing the stringent performance objectives of modern structures such as
superior strength and minimal weight introduces a dynamic component that needs to be
considered. Depending on the applications, low structural damping can lead to problems
such as measurement inaccuracy of attached equipment, transmission of acoustic noise or
structural failure. Various methods to suppress vibrations have been developed and these
commonly include active, passive, semi-active and hybrid vibration control systems.

In recent years, the research topic of active control for flexible structures has received
considerable attention. In order to reject vibrations an optimal LQ or state feedback based
on pole assignment has been addressed in literature as a means used in solving active control
problems ([8-11]).

This paper addresses the vibration control of rectangular plate structures by the methods
of linear feedback control. It is concerned with state feedback designed by pole placement
method (in our case modification of this method — incomplete pole assignment), linear
quadratic optimization and by self tuning regulator. Applying these methods an optimal
place is chosen for sensor and actuator by the method shown in [12] which is based on mode
shapes — amplitudes and nodal points.

Mathematical model of finite rectangular plate is considered in Section 2. The re-
sulted model is used in Section 3 where three possibilities of control law are described.
Section 3.1 describes the incomplete pole assignment method, while Section 3.2 deals with
linear quadratic controller which is often suggested in literature as a means for solving active
control problems. The third control law — self tuning controller is described in Section 3.3.
All these methods are compared in the regard of quality of control law and the robustness
in the last part of Section 3. Finally, in Section 4, some overall conclusions are drawn.
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2. Mathematical model

The mathematical model of thin rectangular plate vibration — equation of motion has
the following form [1], [7]

gr
AAqg=—= 2.1
¢4=-7 (2.1)
where gr contains all forces, inertia ones included, D is cylindrical stiffness of the plate and
the operator is defined by
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Considering only one discrete force the equation of motion takes the form

1 ..

AAg =5 [V(®)o(r —2) — pd] , (2.3)
where p = ho, o is density, h is thickness, r = [z,y] is radius vector of arbitrary point,
z = [za, ya) is position of the actuator, v(t) is time dependence of the force and §(r — z) is
Dirac impulse — spatial distribution of the force.

Free oscillations of the plate can be described by the equation

K M
=~ m
AAg=— a7 @ (2.4)
Solving (2.4) by separation of variables yields
M
K X
AN 2 M
AAv —Q vl 0 (2.5)

The solution is assumed in the form
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v g a;j i (1) Ei Ej aij sin —— sin = (2.6)
Substituting (2.6) to (2.5) we obtain the natural frequencies
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and eigenfunctions

D . ,
Vi =2 sin -~ gin 27 , (2.8)
wab a b

corresponding to ¢ and j subscripts. The eigenfunctions are orthonormalized by the M-norm.
These functions (2.8) respect the boundary conditions (plate is simply supported on the
boundary).
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Forced vibrations of thin plate excited by the discrete force located in position z have
a response

i=1 j=1

n

(%% |: Ulj,Mp> COSs Qijt + vij,Mr> sin Qijt +

1
a; !
(2.9)

/ vij, F) y(t) sin (¢t — 7)dr| ,
0

where p is initial displacement field, r is initial velocity field and F' = §(r — z) is spatial
distribution of the force (in our case p and r are zeroes) and scalar product (v(z),w(z)) is
defined by

(v(z),w(z)) = /v(x)w(x) dv (2.10)
Q
where Q is occupied domain by continuum and dV is a volume infinitesimal element.

The equation (2.9) can be rewritten into form

m n
r t :ZZU”
i=1 j=1

The proportional damping is assumed.

t

—v;5(z) [ y(7) sinQ;(t —71)dr| . (2.11)
/

Qij

Laplace transform of the response under (2.11) yields the formula

vij(2)
R E i (T T(s) 2.12
(2 vig(xs) 02 5% + 52Dy, O () (2.12)

H(z,1s, 5)

where rs = [zs,ys] is position of the sensor, z = [x,,y,] is position of the actuator, s is
parameter of Laplace transformation, H(z,rs,s) is transfer function and I'(s) is Laplace
transformation of ~(t).

Problem: Size: 250%200x 1 mm (axbxh)
Material properties (steel): E = 2.1x10! Pa
v=20.3

0 = 7800 kg/m?
D;; = 0.01 (damping parameter)
Boundary conditions: simply supported on all edges

Eigenfrequency [rad/s]
635.4
1379.2
2619.0
1797.7
2541.5
3781.3
3734.8
4478.7
5718.4

NejNo o) o\ | Kol ROLY o RUC) I O I

Tab.1: FEigenfrequencies of uncontrolled model
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Bode Diagram
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Fig.1: Bode diagram of uncontrolled model of thin rectangular plate

3. Vibration control

In this section, the truncated transfer function description (2.12) is substituted by the
equivalent state space model

x=Ax+Bu, 21
y=Cx, (3.1)

where x € R?" is the state of the system, n is the number of mode shapes considering, u is
the input, y is the output, and A € R?"*2" B € R?"*!, C € R'*?" are system matrices

given by where

0 1
61 —o
A_ =

0
K
, B=|: |, C=[10 - 10], (32
0 1 0
_6n —Qp Kn
ak:2DijQij, k:3(2—1)+],
Br =, ke{l1,2,....,n}, (3.3)
Kk = Vl-j(rs)yij(z) Z,] = 1,2,3 .

In the following examples, n = 9 is assumed.

Further, it is considered that the inputs for disturbances are the same as for the control

actions.
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3.1. Incomplete pole assignment

It is well known that the positions of the poles of the system (3.1) determine the damping
of system responses. For this purpose the slightly damped eigenvalues of the matrix A should
be properly changed. Especially, the eigenvalues with the minimal absolute values should
be located to the suitable positions. Since the complete pole assignment by state feedback
is unrealistic, because of ill conditioning of the corresponding problem, we focus on the
incomplete assignment. Thus, only the m closed loop poles are required to the assignment
to the properly chosen locations in the complex plane. For this purpose the standard control
configuration with state observer is used (Fig. 2).

u
—Dﬁ—®——> System >
+
u
>
Observer
——>
State Feedback |€————

Fig.2: Standard configuration of the state feedback with the state observer

The state feedback
u=Fx, (3.4)

where F € RY*2" gives the closed loop system
x=Ax+BFu=(A+BF)x. (3.5)

The incomplete assignment problem considered above yields the requirement

L *
A—I—BFN[O *], (3.6)

where the symbol ~ denotes the relation of matrix similarity and L € R™*"™ is given matrix
with required eigenvalues of the closed loop. In [2] and [4], it was shown that any matrix F
satisfying (3.6) can be expressed in the form

FH,F)=HX"H)XH) 'X"H)+F, (3.7)
where X (H) is the solution of the matrix equation
AX-XL+BH=0 (3.8)
where H € R1™ and F € R1*2" is an arbitrary matrix satisfying the condition

FX(H)=0. (3.9)
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Moreover in [2] it is proved that X(H) has fuel rank for almost any H and F(H, F) given
by (3.7) satisfies (3.6). Thus (3.7) can be used for computing of the state feedback assigning
the eigenvalues of L to the matrix A + BF. The freedom in this procedure caused by the
free choosing of the matrix H can be used for obtaining the most robust solution by Monte
Carlo method.

The observer is described by

(3.10)

where % is the estimation of the state x, ¥ is the estimation of the output y and K € R?**1
is the appropriate gain matrix obtained from the eigenvalues assignment problem for the
observer matrix A + K C (for details see [3]).
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Fig.3: Model of SC2FA in Matlab — Simulink
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3.2. Linear quadratic optimization [3]

In this case, the performance index is given by
L:/QTQx+uTRMdh+mm, (3.11)
0

where Q is a positive semi-definite matrix and R is a positive definite matrix.
The optimal control has the form
u=Fx,
F=-R'B"P, (3.12)
1= Xg Pxg,
where P is the solution of the algebraic Riccati equation

ATP+PA-PBR !'BTP+Q=0. (3.13)

The design freedom of the matrices Q and R can be used again to obtain the good perfor-
mance and the robustness by Monte Carlo method.

3.3. Self tuning controller SC2FA

The self tuning controller SC2FA is a special controller for vibration damping from the
control system REX [5],[6]. This function block provides all necessary steps to design the
control law for suppressing the first mode shape. Particularly, it provides the automatic
identification of the first mode dynamics, design of the state feedback and state observer ac-
cording to the user design specification. Also, the corresponding control law is implemented
within this block — Fig. 3.
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Fig.4: Impulse response of uncontrolled model of thin rectangular plate
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Fig.5: Positions of sensor and actuator

X

3.4. Results

The positions of the sensor and actuator for design of the state feedback are chosen as

Sensor : 3_a 3—b
' 47 4

a b
Actuator: - =
ctuator { 7 4}
These locations are depicted in Fig. 5.
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Fig.6: Comparison of Bode diagram of uncontrolled model
and model with controller designed by incomplete pole
assignment method (heavy line is controlled model)
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Fig.7: Impulse response of controlled system, state feedback controlled
designed by incomplete pole assignment method

Nyquist Diagram
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Fig.8: Nyquist diagram of open loop of the system with controller
designed by incomplete pole assignment method

The grater distance of the Nyquist plot from the point [—1, 0] the more robust system is

achieved.

From Fig. 10 it follows that LQ controller damps the impulse response well, but from
Fig. 7 it is clear that the incomplete pole assignment control law yields the quicker and more

damped response.



32 Kovarova J. et al.: Vibration Control of Plate Structures

Bode Diagram
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Fig.9: Comparison of Bode diagram of uncontrolled model
(thin line) and model with controller designed by linear
quadratic optimization method (heavy line)
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Fig.10: Impulse response of controlled system, state feedback controller
designed by linear quadratic optimization method

In the case of self tuning controller design, both sensor and actuator are placed into the
same location [a/2,b/2] (see Fig. 12).

From Fig. 15 it follows that the self-tuning controller damps the first mode quite good
but the damping of higher modes is insufficient.
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Nyquist Diagram
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Fig.11: Nyquist diagram of open loop of the system with controller
designed by linear quadratic optimization method
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Fig.12: Positions of sensor and actuator

4. Conclusion

In this paper three possibilities of feedback control have been proposed as a means for the
control of vibrations of plate structures. It was found that the system with the controller
designed by incomplete pole assignment is more robust then the controller resulted form
linear quadratic optimization. In this point, it is important to note that both the LQ and
pole assignment state feedback were designed by Monte Carlo method which maximizes the
measure of the robustness. All tested methods give rather good results when they are sim-
ulated in MATLAB (Simulink). However, only the self tuning controller with experimental
identification can be simply implemented in real case.
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Fig.14: The responses of the second order model
(heavy line) and the real system (thin line)
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Fig.15: Open loop (dotted line) and closed loop (solid line) responses
to the rectangular signal excitation for SC2FA controller

The purpose of this work is to compare the standard LQ control law with the controller
designed by incomplete pole assignment and more practical self tuning controller. The
results are preliminary, but the authors believe that they may be useful for robustness
understanding of the problem considered.
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