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FEM MODELING OF THERMO-MECHANICAL
INTERACTION IN PRE-PRESSED RUBBER BLOCK

Luděk Pešek, Ladislav Půst, Petr Šulc*

The FEMLAB code based on weak formulation of PDE’s problem was used at a solu-
tion of feedback thermo-mechanical interaction in pre-pressed rubber block used for
resilient elements of the composed tram wheels. The structural motion and heat con-
duction equations are solved interactively as time dependent problems. The equality
of heat energy density and dissipation energy density realizes the coupling between the
equations. The dissipation energy density is computed according to the assumed pro-
portional damping model. In the paper the results of thermo-mechanical processes
in case of a plane strain deformation under static pre-pressed and cyclic dynamic
loading are presented and analyzed.
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1. Introduction

In frame of grant task GA CR 101/05/2669 ‘Dynamics and reliability of vibrodamping
elements from thermo-visco-elastic-materials’ we deal with the mathematical modeling of
rubber segments that are used in passive damping for reduction of noise and vibration of
composed railway wheels (see [1], [2]).

These segments that are pre-pressed between the rim and disk represent a transformation
deformation element between both parts of the wheel. Then the total stress of the segments
consists of static pre-press given by a mount and dynamic stress coming from rolling the
wheel on the rail.

In case of the static pre-stress it is considered large deformation (cca 20%) that is mod-
eled in frame of the grant task by finite deformations and viscoelasticity theory [3]. The
dynamic stress at relatively smaller deformations (up to 2 %) is herein modeled by linear
theory of viscoelasticity concerning thermo-mechanical coupling since elastomers are gener-
ally characterized by high inner damping and also marked dependence on temperature [4].
The temperature field besides the mechanical straining also causes additional loading and
can influence the lifetime of the elements.

The thermal processes in the elements are quite complicated since in addition to heat flow
between a body and surroundings, heat is generated by transformation of dissipated mechan-
ical energy, too. At stationary regime the temperature stabilizes after certain time so that
the heat, which is generated by energy dissipated by the inner damping, is in equilibrium
with the heat drained to environment. In addition the changes of temperature cause back-
wardly changes of elastic and damping behaviors and that consequently changes dynamic

* Ing. L. Pešek, CSc., Ing. L. Půst, DrSc., Ing. P. Šulc, Institute of Thermomechanics, AS CR, Dolejskova 5,
182 00 Prague 8
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properties of a whole system. Since temperature changes inside the deformed elements due
to thermo-elasticity were neglectable small with respect to dissipated energy temperature
changes this effect was omitted.

The simple discrete mathematical model for analysis of thermo-mechanical processes at
harmonic loading of the rubber resilient segments of the tram wheels is in [5]. Numerical
modeling of temperature distribution inside the segments at mechanical harmonic excitation
by finite element method (FEM) is presented in [6]. There is heat generation from mechanical
energy absorption modeled by constant heat power density in the all volume.

The FEMLAB code based on weak formulation of PDE’s problem was used at a solu-
tion of feedback thermo-mechanical interaction by FEM. In our approach structural motion
and heat conduction equations are solved interactively as time dependent problems. The
conservative energy law, i.e. equality of heat energy density and dissipation energy density,
realizes the coupling between the equations. The dissipation energy density is numerically
evaluated according to the assumed damping model.

In this paper the first results of numerical simulations are presented and analyzed under
following considerations : a plane strain deformation under cyclic dynamic loading, propor-
tional damping, heat generation by mechanical energy lost, heat transfer between rubber
and outer air and steel parts and stiffness dependence on temperature. The material pa-
rameters of the model were identified from laboratory dynamic tests, such as temperature,
force and displacement measurements obtained on the rubber samples of the composed tram
wheels.

2. Mathematical model of thermo-mechanical interaction

Scheme of the mathematical model with a transfer of mechanical energy into heat is
depicted on Fig. 1. It is concerned a time dependent plane deformation case of linear
visco-elastic body including inertia forces. At vibration the energy ΛD is changed to the
heat Qprod in the body (rubber). Part of the heat flows into surrounding (steel, air) by heat
transfer q̇. Part of the heat cumulates in the body and increases its temperature T . The
boundary conditions of the body deformation and loading are defined so that the bottom part
is fixed, upper part is free in deformation and is uniformly loaded either by stresses px = 0,
py �= 0 (press) or px �= 0, py = 0 (shear) with harmonic time dependence. Heat conductivity
coefficients and reference temperatures of surrounding (air – αa; Ta, steel – αm; Tm) give
the boundary conditions of heat conduction. Initial conditions are described by vectors of
displacements u0 and velocities u̇0 and initial temperature T0.

The equation of motion can be expressed in discretized form as

Mü + Bu̇ + Ku = F , (1)

where mass M, damping B and stiffness K matrices are generated from the Lame equation of
motion by weak formulation of FEM. F is a vector of excitation forces, u = [u1, v1, . . . , un, vn]
is displacement vector (n is number of nodes). A dot above the letter designates a time
derivative. The damping matrix is defined according to the expression valid for proportional
damping

B = αM M + βK K . (2)
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Fig.1: Scheme of mathematical model with thermo-mechanical interaction

The stiffness matrix changes with temperature since the non-linear dependence of Young
modulus E on temperature T is introduced into the model :

E(T ) =
E0

1 + k1 (T − T0)
, (3)

where k1 is parameter and T0 is initial temperature of the body.

In continuum mechanics the dissipated energy ΛD =
∫

V
λd dV of the volume V can be

expressed for one loading period T in the form of density as

λd =
∮
σd ij dεij =

∫
T

σd ij ε̇ij dt , (4)

where σd is a tensor of the dissipated stress and ε, ε̇ are tensors of strain and strain rate,
respectively. Then the density of dissipated power can be written

λ̇d = σd ij ε̇ij . (5)

For the case of plane deformation, the tensor notation can be transferred into vector form as

λ̇d = {σd}T {ε̇} , (6)

where components of the vectors are

{σd} = [σd xx; σd yy; τd xy] = [σd 11; σd 22; τd 12] , {ε̇} = [ε̇xx; ε̇yy; γ̇xy] = [ε̇11; ε̇22; 2 ε̇12] .

The components of strain rate for small deformations are defined

ε̇xx =
∂u̇

∂x
, ε̇yy =

∂v̇

∂y
, γ̇xy =

∂u̇

∂y
+
∂v̇

∂x
. (7)

The components of the dissipated stress for case of proportional damping (2) with coefficients
αM = 0, βK �= 0 are

σd xx = βK
E

1 − μ2
(ε̇xx + μ ε̇yy) ,

σd yy = βK
E

1 − μ2
(ε̇yy + μ ε̇xx) ,

τd xy = βK
E

2 (1 + μ)
γ̇xy = βKG(γ̇xy) .

(8)
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After substituting Eq. (7), (8) into (6) we receive

λ̇d = βK
E

1 − μ2

{(
∂u̇

∂x

)2

+
(
∂v̇

∂y

)2

+ 2μ
(
∂u̇

∂x

)(
∂v̇

∂y

)
+

+ (1 − μ)

[(
∂u̇

∂y

)2

+ 2
(
∂u̇

∂y

)(
∂v̇

∂x

)
+
(
∂v̇

∂x

)2
]}

.

(9)

For case of proportional damping with αM �= 0 this expression gains an additional term
λ̇d+ due to energy lost from dissipation forces Fd that are from definition of proportional
damping a function αM 
 {u̇}. Then

λ̇d+ = {Fd}T {u̇} = αM 
 {u̇}2 , (10)

where {Fd} = [Fdx; Fdy] and {u̇} = [u̇, v̇]. Since the density of dissipated power is over the
coefficient αM dependent on absolute velocity (10) with respect to an inertial space this part
of damping is called an absolute damping. In case of coefficient βK there is a dependence of
dissipated energy on strain rates (9) and therefore this part is denoted as internal (relative)
damping (see [7]).

Hence the dissipated energy changes into the heat according to the equation Qprod = ΛD.
The heat both cumulates in the body and passes to surrounding. Neglecting a thermal
exchange by convection and concerning λ, cp, 
 = const., this process can be mathematically
described by Fourier equation of the linear heat conduction


 cp

(
∂T

∂t

)
+ {L}T {q̇} = q̇prod , (11)

where L is divergence and gradient operator; q̇prod = λ̇d is volume density of generated
heat power Q̇prod and {q̇} = −λ gradT surface density of heat flow. The heat transfer by
surface B is described by the Newton cooling law

q̇ = −αB (TBe − TBi) , (12)

where αB (B = a,m for air and metal, respectively) is a coefficient of heat transfer on
boundary B, quantities TBe, TBi are temperatures on outer and inner side, respectively, of
the boundary B.

3. Numerical results of rubber segment model at dynamic loading with
thermo-mechanic interaction

The above described mathematical model was used for solution of thermo-mechanical
processes in rubber block (width 0.047m, height 0.0258m, thickness 0.05m) as geometri-
cally simplified rubber resilient segment used for the wheels under press and shear dynamic
loadings. The material of the block was rubber on basis of synthetic isopren butadien
elastomer with hardness Shore 80. The rectangular cross-section of the block was meshed
by 516 triangle elements. The FEM model was developed in the program environment
FEMLAB 3.1.

The mechanical and thermal parameters of the model were obtained from their identifica-
tion based on previous measurements of loading force, displacement and inner temperature
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responses of the segments for case of harmonic loading at frequency 20Hz, pre-press 6 kN
and dynamic amplitude 2 kN (see [8]) : αa = 30W/m2/◦C, αm = 200W/m2/◦C coefficients
of heat transfer into air and steel, respectively, T0a = T0m = 25.5 ◦C temperatures of air and
steel, cp = 1000J/kg/◦C specific heat coefficient of rubber, λ = 0.28W/m/◦C heat transfer
coefficient of rubber, 
 = 1357kg/m3 density of rubber, E0 = 52MPa Young modulus for
temperature T0 = 26 ◦C, k1 = 0.06 parameter of the Young modulus dependence on tem-
perature, μ = 0.49 Poisson constant. The initial temperature of rubber and surrounding
was defined 26 ◦C.

Continuous uniformly distributed dynamic loading along the upper boundary of the block
was for the press py = p0 sin(2 π f t), where amplitude p0 = 5.32×105 Nm−2, and for the
shear px = p0 sin(2 π f t), where p0 = 2.13×105 Nm−2. For the press case, the amplitude
of the total force on the whole segment corresponded to the test load amplitude 2 kN.
Since the shear stiffness is about 3 times lower than press stiffness the amplitude of the
shear was decreased so that the maximal shear deformation amplitudes were comparable
with the press deformations. For both type of loading we chose different coefficients of
proportional damping, i.e. βK = 12×10−4, αM = 0 (cca 15% damping ratio) for the press
and βK = 8×10−4, αM = 0 (cca 8 % damping ratio) for the shear.

Loading frequency f was 20Hz for both cases. After loading time block in duration 200 s,
the cooling period of 50 s without loading followed. In this period the generated heat was
equal zero.

Fig.2: The total deformation field of the rubber block at dynamic
loading (press – on the left, shear – on the right)

Fig.3: Fields of dissipated energy density of the block during one loading
cycle (the press – on the left, the shear – on the right)

Time integration was performed in the FEMLAB, where after time discretization of
differential equations, the linear solver UMFPACK that is based on multifrontal method and
LU factorization of sparse coefficient matrices was used for solution of the equation system.
The integration step was 1×10−3 s and output time step for storage data was 1×10−2 s.
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Fig.4: Fields of strain energy density of the block during one loading
cycle (the press – on the left, the shear – on the right)

Figures 2 to 6 depict the results of numerical simulations. The total displacements,
i.e. the Euclidean norm of displacement vector in single nodes, and deformed contours at
a selected time are shown in Fig. 2. Regarding boundary condition of the upper side of the
block for press loading, the maximum total displacements are in upper corners of the block
where besides maximum vertical displacement also dilatation in horizontal direction occurs.
In case of the shear loading the displacements are uniformly linearly distributed along height
of the block.

On Fig. 3 and 4 there are shown fields of the density of dissipated energy and density
of strain energy for both types of loading during one loading period T = 0.05 s. Each floor
of these figures from bottom up corresponds to increasing sampled time (ΔT = 0.01) of
the cycle. By comparison of the time dependences from Fig. 3 and 4 it shows that there is
shape affinity with phase lag between both quantities. This lag is caused by dependence of
dissipated energy on strain rate besides of strain in the case strain energy. For harmonic
loading it leads to the lag of quarter of a period. So where it is the peak amplitude of one
quantity there is null amplitude of the other and vice verse. It can be seen at the bottom
and upper floors of both figures. In the results of the energy and power distributions a side
effect can be seen. There are spots of high concentration in the bottom and upper (in case
of the shear) corners of the block due to geometric discontinuities and shear stresses in
these points and insufficient dense space discretization. However since a large heat transfer
into surrounding at these points, this side effect had not significant effect on a temperature
distribution of the block as it is shown bellow.

The next two figures 5 and 6 depict temperature fields of the block for different times
of loading (t = 0 s bottom, 100 s middle and 200 s upper floor) and cooling (t = 200 s,
225 s and 250 s) for the press and shear loadings, respectively. For both cases, it can be
seen non-uniform distribution of temperature inside the block. The heat transfer disturbs
a shape affinity of temperature fields with the fields of the densities (Fig. 3 and 4). Temper-
atures stabilize with time and the thermo-mechanical equilibrium settles. The distribution
is dependent on the strain energy field to which a dissipated energy is directly dependent
according to proportional damping. In addition the temperature field is dependent on the
heat transfer into surrounding. So we can see lowest temperatures at the rubber-steel in-
terface where is the largest heat transfer. The absolute values of temperatures also depend
on the frequency of loading and size of damping coefficients. The generated heat is linearly
dependent on both of them. The damping coefficients can be determined from the loss
factor of given material or by parametric identification from measurement of temperature
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Obr.5: Temperature field of the segment for different times of loading
(0 s bottom, 100 s middle and 200 s upper view) (left side) and
cooling (200 s, 225 s and 250 s) (right side) – case of press loading

Fig.6: Temperature field of the segment for different times of loading
(0 s, 100 s and 200 s) (left side) and cooling (200 s, 225 s and 250 s)
(right side) – case of shear loading

Fig.7: Temperature versus time characteristics of selected points along
vertical section (1 cm aside from left edge) of the block (the press
– on the left, the shear – on the right)

responses at dynamic tests. In the other case the drain of heat into surrounding has to be
concerned.

The curve [0.01, 0] belongs to the point on the bottom and [0.01, 25.8×10−3] on the top
of the block. For the press loading in contradiction to the shear loading it can be seen non-
symmetric distribution in lower a upper halves of the block. The maximum temperature
for the press is reached at the upper half of the segment – point [0.01, 17.2×10−3]. The
lowest temperatures at the upper and bottom side due to marked heat transfer into steel
parts. The increase of temperature up to 200 s corresponds to loading block and decrease
after discontinuity in the characteristics belongs to the cooling period. In spite of a lower
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coefficient of proportional damping at the shear than at the press, the increase of temperature
is comparable. It is cased partly by difference in strain distribution and partly by higher
amplitudes of motions due to lower stiffness at the shear as it can be seen on hysteresis curves
of Fig. 8. On this figure there are loops for the press (py versus v) and shear (px versus u)
types of loading in the middle [0.0235, 0.0258] of the upper side of the block. The loops
at the beginning of the loading are drawn by solid line and by dash line at its end. The
tilting and prolonging of the loops during loading are cased by Young modulus dependence
on temperature (Eq. 3) that increases.

Fig.8: Hysteresis loops at the beginning (solid) and end (dash line)
of the loading stage for the press and shear

4. Conclusion

The paper deals with the numerical modeling and solution of feedback thermo-mechanical
interaction of a thermo-viscoelastic body at harmonic loading by finite element method. The
proposed method was applied on the case of rubber resilient segment of tram wheels.

The aim of this investigation is to improve knowledge of thermo-rheological behavior of
rubberlike materials. Therefore we designed mathematical model, whose coefficients can
be evaluated by the identification process on the test pattern of a damping material under
selected simple stress state, such as uni-axial tension or/and compression, pure shear. From
loading point of view a harmonic type seems to be suitable, since changes of rheological
parameters are rather slowly varying in time and there is longer time for their observation.

In addition from practical point of view an analysis of thermal processes in rubber resilient
elements can lead to their better design with drain of generated heat into surrounding what
can help to increase their lifetime at heavy service loading.

For identification of the model parameters we plan to perform next dynamic tests of
rubber samples under different pre-presses, dynamic forces and temperature conditions using
a hydraulic shaker and climat chamber in our laboratory in Plzen. For measurement of
surface temperature fields will be used a thermo-camera.

This article is the extended paper [9].
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zat́ıžeńı, Proc. of National colloquium with international participation Interaction and feed-
backs ’2004 (Ed.: Zolotarev I.), IT AS CR, 2004, pp.159-166
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